二分 归并 排序

本文详细介绍了二分归并排序的原理和步骤,该算法将数组不断拆分成两半,直至每个子数组仅包含一个元素,然后通过归并操作将排序后的子数组合并,最终得到完全排序的数组。核心代码展示了如何实现合并过程,并提供了递归分组的函数。整个算法的时间复杂度为O(log2n),适用于大规模数据的高效排序。
摘要由CSDN通过智能技术生成

问题:二分归并排序:对n个不同的数构成的数组A[1…n]进行排序,其中n=2^k

分析:二分归并排序,本质上是一种归并排序算法,不断将一个数组分为左右两部分,直到不可分,然后再将两两合并直到完整。
1.分解n个元素直到组成n/2组数组。
2.使用归并排序递归排序两个子序列。
3.合并已经排序的子序列。

核心代码如下

void Merge(int A[], int p, int q, int r)
{
	int* L, * R, x, y;
	x = q - p + 1, y = r - q;
	L = (int*)malloc(sizeof(int) * x);
	R = (int*)malloc(sizeof(int) * y);
	int i, j;
	for (i = 0; i < x; i++)
		L[i] = A[i + p];
	for (j = 0; j < y; j++)
		R[j] = A[j + q + 1];
	i = j = 0;
	int k = p;
	while (i < x && j < y)
	{
		if (L[i] <= R[j])
			A[k++] = L[i++];
		else
			A[k++] = R[j++];
	}
	while (i < x)
		A[k++] = L[i++];
	while (j < y)
		A[k++] = R[j++];
	free(L);
	free(R);
}




void MergeSort(int A[], int p, int r)	// 递归分组函数
{
	if (p < r)
	{
		int q = (p + r) / 2;
		MergeSort(A, p, q);
		MergeSort(A, q + 1, r);
		Merge(A, p, q, r);// 调用Merge函数,合并两组数据
	}
}

复杂度log2n;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值