连接远程服务器实现深度学习实验

针对我自己 服务器跑实验的步骤

1、Xshell会话连接服务器地址,账号密码

1、

2、连接成功,先 source ~/.bashrc 一下进入base环境

3、再 source /home/bc2022/anaconda3/bin/activate 激活一下自己账户的anaconda环境

4、conda activate wympytorch  激活自己的torch环境

5、进入项目的fedclip目录下:

python methods/xxx.py --dataset xxxx --mode FedAtImg --test_envs 3 --iters 201 --wk_iters 1 --lr xe-xx

6、用第二块卡跑实验:CUDA_VISIBLE_DEVICES=1 python run_file.py

目录

一、安装Xshell

二、安装anaconda,已有。直接下一步

三、安装pytorch环境

四、连接自己本地pycharm,上传项目到服务器,远程跑实验

1、设置连接

2、设置代码自动上传

3、设置python解释器,设成服务器的

​编辑4、代码上传到服务器,实现运行

五、重新进入账户下的conda环境


部分参考博文实现Linux服务器配置深度学习环境并跑代码完整步骤_linux服务器跑代码需要安装anaconda吗-CSDN博客

一、安装Xshell

新建会话:输入服务器ip地址,再进入账号bc2022

查看自己服务器,显卡版本情况:CUDA版本是12.2,对应pytorch12.1即可

二、安装anaconda,已有。直接下一步

(对于本人情况)不能跳过,因为我们服务器设置了多个账户,我的账户下是没有我的anaconda的,用的2021账户下的,创建的torch环境位置是/home/bc2022/.conda/envs/xxx

是.conda而不是anaconda3,代表的虚假的,不能使用

我需要重新安装anaconda,在Index of /anaconda/archive/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror上复制下载连接,出现403forbidden错误,转将其保存到云盘上,wget -c 云盘链接,下载成功

安装该安装包

其默认是安装在/home/bc2022/anaconda3下,进入该目录,并conda初始化

保存更新环境变量

可以看到现在已转为2022下的anaconda了

接下来就可以创建自己torch环境了

评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值