动态规划算法(DP,Dynamic Programming)

动态规划算法(DP,Dynamic Programming)



前言

它针对满足特定条件的一类问题,对各状态维度进行分阶段、有顺序、无重复、决策性的遍历求解。

一、递归到DP的一般转化方法

递归函数有n个参数,就定义一个n维的数组,数组
的下标是递归函数参数的取值范围,数组元素的值
是递归函数的返回值,这样就可以从边界值开始,
逐步填充数组,相当于计算递归函数值的逆过程。

二、DP解题的一般思路

1.将原问题分解为子问题

  • 把原问题分解为若干个子问题,子问题和原问题形式相同
    或类似,只不过规模变小了。子问题都解决,原问题即解
    决(数字三角形例)。
  • 子问题的解一旦求出就会被保存,所以每个子问题只需求解一次。

2.*确定状态

  • 在用动态规划解题时,我们往往将和子问题相
    关的各个变量的一组取值,称之为一个“状态”。
    一个“状态”对应于一个或多个子问题,
    所谓某个“状态”下的“值”,就是这个“状态”所对应的子问题的解。
  • 所有“状态”的集合,构成问题的“状态空间”。“状态
    空间”的大小,与用动态规划解决问题的时间复杂度直接相关。
    在数字三角形的例子里,一共有N×(N+1)/2个数字,所以这个
    问题的状态空间里一共就有N×(N+1)/2个状态。
    整个问题的时间复杂度是状态数目乘以计算每个状态所需
    时间。
    在数字三角形里每个“状态”只需要经过一次,且在每个
    状态上作计算所花的时间都是和N无关的常数。
  • 用动态规划解题,经常碰到的情况是,K个整型变量能
    构成一个状态(如数字三角形中的行号和列号这两个变量
    构成“状态”)。如果这K个整型变量的取值范围分别是
    N1, N2, ……Nk,那么,我们就可以用一个K维的数组
    array[N1] [N2]……[Nk]来存储各个状态的“值”。这个
    “值”未必就是一个整数或浮点数,可能是需要一个结构
    才能表示的,那么array就可以是一个结构数组。一个
    “状态”下的“值”通常会是一个或多个子问题的解。

3. 确定一些初始状态(边界状态)的值

  • 以“数字三角形”为例,初始状态就是底边数字,值
    就是底边数字值。

4. 确定状态转移方程

  • 定义出什么是“状态”,以及在该 “状态”下的“值”后,就要
    找出不同的状态之间如何迁移――即如何从一个或多个“值”已知的
    “状态”,求出另一个“状态”的“值”。状态的迁移可以用递推公式表示,此递推公式也可被称作“状态转移方程”。

能用DP解决的问题的特点

  1. 问题具有最优子结构性质。如果问题的最优解所包含的
    子问题的解也是最优的,我们就称该问题具有最优子结
    构性质。
  2. 无后效性。当前的若干个状态值一旦确定,则此后过程
    的演变就只和这若干个状态的值有关,和之前是采取哪
    种手段或经过哪条路径演变到当前的这若干个状态,没
    有关系。
  3. 子问题可重叠性。 所求解的问题可视作若干个重叠子问 题的逐层递进,每个子问题的求解过程都构成一个阶段。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值