1208. 尽可能使字符串相等
给你两个长度相同的字符串,s 和 t。
将 s 中的第 i 个字符变到 t 中的第 i 个字符需要 |s[i] - t[i]| 的开销(开销可能为 0),也就是两个字符的 ASCII 码值的差的绝对值。
用于变更字符串的最大预算是 maxCost。在转化字符串时,总开销应当小于等于该预算,这也意味着字符串的转化可能是不完全的。
如果你可以将 s 的子字符串转化为它在 t 中对应的子字符串,则返回可以转化的最大长度。
如果 s 中没有子字符串可以转化成 t 中对应的子字符串,则返回 0。
示例 1:
输入:s = "abcd", t = "bcdf", cost = 3
输出:3
解释:s 中的 "abc" 可以变为 "bcd"。开销为 3,所以最大长度为 3。
示例 2:
输入:s = "abcd", t = "cdef", cost = 3
输出:1
解释:s 中的任一字符要想变成 t 中对应的字符,其开销都是 2。因此,最大长度为 1。
示例 3:
输入:s = "abcd", t = "acde", cost = 0
输出:1
解释:你无法作出任何改动,所以最大长度为 1。
提示:
1 <= s.length, t.length <= 10^5
0 <= maxCost <= 10^6
s 和 t 都只含小写英文字母。
解题
1.用列表存储差值信息
n = len(s)
lst = [0]*n
for i in range(n):
lst[i] = abs(ord(s[i])-ord(t[i]))
2.双指针解最长子序列问题(快慢指针)
两层循环:
循环一:外层(慢指针定,快指针动)
while right < n:
max_cost += lst[right]
while max_cost > maxCost:
pass
max_len = max(max_len, right-left+1)
right += 1
循环二:内层(改变慢指针)
两个判定
判定一:慢指针动判定max_cost > maxCost
判定二:结果更新判定max_len = max(max_len, right-left+1)
(在循环结束后)
while max_cost > maxCost:
max_cost -= lst[left]
left += 1
max_len = max(max_len, right-left+1)
完整代码
class Solution:
def equalSubstring(self, s: str, t: str, maxCost: int) -> int:
n = len(s)
lst = [0]*n
for i in range(n):
lst[i] = abs(ord(s[i])-ord(t[i]))
left, right = 0, 0
max_cost, max_len = 0, 0
while right < n:
max_cost += lst[right]
while max_cost > maxCost:
max_cost -= lst[left]
left += 1
max_len = max(max_len, right-left+1)
right += 1
return max_len