这篇博客是我对一篇关于无人机检测的综述的整理,如有错误之处烦请指正。文章链接
On the Detection of Unauthorized Drones—Techniques and Future Perspectives: A Review
1.研究该领域的目的(动机)
无人机可以应用于许多领域:
1.娱乐:摄影、摄像
2.地质学:测量、测绘
3.交通监控
4.安保:搜救、人群监控、应急、救灾等
预计到2023年底,模型无人机的数量将达到一百六十多万,非模型(商用)无人机总数将达到83.5万架(美国),而无人机的大规模使用也带来了一系列问题:
1.闯入禁飞区:机场、地铁、石油和天然气设施、军事基地等
2.侵犯个人隐私
3.利用无人机进行网络攻击
4.恐怖主义和目标袭击
因此,对无人机的检测势在必行。
2.无人机检测的定义
无人机检测通常是指检测那些执行非法活动的无人机,从广义上讲,探测包括确定入侵无人机的存在、身份(型号)、大小、位置、方向、速度和载荷。但在本文中仅将无人机检测定义为检测无人机是否存在。
3.文章对该领域理论的分类
一、基于声学的检测
二、基于射频的检测
三、基于雷达的检测
四、基于视觉的检测
五、传感器融合
4.基于声学的方法
声音通常由无人机的不同部件产生,包括螺旋桨叶片、发动机或风。然而,螺旋桨叶片的声音具有相对较高的振幅,因此经常用于检测。
基于声学的检测方法的一般流程是
1.通过传感器(如麦克风),检测到声音信息
2.利用机器学习方法从得到的声学信息中提取特征
3.将得到的特征与数据库中的数据进行比对,找到对应的无人机

图4展示的是某两型无人机的声学特征,包括声音的振幅和频谱,通过声学特征的对比不仅可以检测无人机的存在还能确定具体型号。
优缺点
优点:
1.便宜
2.受天气影响小
3.无需对准无人机就可以检测
缺点:
1.受背景噪音影响大
2.检测范围有限,大致是200米,但具体要看实际的环境
3.声音是否会随着长时间使用或电池电量不足而变化还有待研究
相关论文
论文名称 | 基本信息 | 方法 | 补充 |
---|---|---|---|
Real-time drone detection and recognition by acoustic fingerprint | Balakin M, 2021 5th Scientific School Dynamics of Complex Networks and their Applications (DCNA). IEEE, 2021: 44-45. | 1.录音室环境中录制无人机引擎的音频信号。2.对音频样本(120~180秒)进行处理,以计算其归一化功率谱密度(PSD)。3.使用归一化PSD的互相关,基于无机的声学特征(即PSD)来识别无人机 | 使用单一技术,如PSD上的互相关来检测,得到的准确率可能不高 |
Machine Learning Inspired Sound-Based Amateur Drone Detection for Public Safety Applications | ANWAR M Z,IEEE Transactions on Vehicular Technology(2区), 2019: 2526-2534. | 1.采用Mel频率倒谱系数(MFCC)和线性预测谱系数(LPCC)特征提取技术,从无人机声音中提取特征 2.采用不同核的支持向量机(SVM)对这些声音进行准确分类 | |
Amateur Drones Detection: A machine learning approach utilizing the acoustic signals in the presence of strong interference | UDDIN Z,Computer Communications(3区), 2020, 154: 236-245. | 1.提出了一种有效的独立分量分析(ICA)的非监督机器学习方法来检测实际场景中的各种声音信号 2.利用ICA提取Mel频率倒谱系数(MFCC)、功率谱密度(PSD)和PSD的均方根值(RMS)等特征使用支持向量机(SVM)和K近邻(KNN)对信号进行分类 | |
Independent Vector Analysis Inspired Amateur Drone Detection Through Acoustic Signals | UDDIN Z,IEEE Access(3区), 2021, 9:63456-63462. | 主要是提出了独立向量分析(IVA)从声学信号中提取特征,其他方面与上文相似 | |
DronePrint | KOLAMUNNA H,Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2021, 5(1): 1-31. | 1.使用了深度学习的方法,所用模型为LSTM 2.从在线资源(如YouTube)中收集无人机的音频,以丰富训练数据为了应对多普勒效应,作者采用了两种数据增强技术(幅度缩放和频率扭曲) | GitHub给了数据集,但没有代码 |
Audio Based Drone Detection and Identification using Deep Learning | AL-EMADI S. 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), Tangier, Morocco. 2019. | 1. 比较了CNN、RNN这两个模型在声音数据集上对UAV的检测、分类表现,CNN更好 2. 声学技术也可以用于无人机定位。 | GitHub仅数据集 |
Empirical Study of Drone Sound Detection in Real-Life Environment with Deep Neural Networks | JEON S, CERN European Organization for Nuclear Research - Zenodo,CERN European Organization for Nuclear Research - Zenodo, 2017 | 1.作者比较了三种ML模型,即高斯混合模型(Gaussian Mixture models, GMM)、CNN和RNN,结果表明RNN优于其他模型。2.记录了一些流行的商业无人机产生的声音,然后用不同的环境声音数据对这些数据进行增强,以弥补不同环境下无人机声音数据的稀缺 | GitHub有代码,但tensorflow。。。 |
总结
-
无人机的声学检测通常采用指纹技术,将记录的无人机声音与预先保存的声学特征进行比较以达到识别分类的目的。
-
识别时常用的一些有用特征是功率谱密度(PSD)、PSD的均方根值、Mel频率倒谱系数(MFCC)和线性预测倒谱系数(LPCC)
-
使用诸如互相关之类的简单匹配技术可能不能提供良好的性能。基于ML的分类技术,如SVM、RF和KNN,可以提供更好的准确性。所用的模型越来越复杂。
-
传统ML方法无法检测时间特征因此依赖于提取的特征。而DL的方法,如LSTM可以检测声学信号中的时间变化。CNN也可以用来自动提取特征并检测
-
即使利用ML和DL方法,基于声学的检测效果仍然不佳。这些工作的结果都是在比较有限的实验和较少的数据集上得到的。大多数工作只是检测是否有无人机,分类的比较少,定位的就更稀少了。对多个无人机的同时检测还没有人做过(2022.6.15)
5. 基于射频的方法
无人机通常使用2.4 GHz至5 GHz的射频信号与控制器进行通信。配备Wi-Fi的无人机使用5.4 GHz,而5G无人机使用3.5 GHz。其他不太常见的频段可以在1.2 GHz和1.3 GHz范围内。基于射频的检测大体思路是获取无人机的通信信号,并对信号进行分析从而实现对无人机的检测。可以利用射频传感器或者射频扫描仪来被动的获取无人机和控制器的信号,主要有两种方法:
- 将传感器接收到的数据包进行解码,当数据包被解码后可以得到无人机的身份、位置、速度,甚至数据包内的数据,如视频流。但该方法需要用到网络嗅探,但网络嗅探在很多国家是非法的。
- 射频接收器不解码数据包,而只捕获射频信号(包括幅度和相位),并在捕获的数据中找到特定的模式。这种方法提供有限的信息,即,它检测无人机的存在,预测无人机的制造和型号,并估计无人机的位置(例如,方向和距离)。由于方法一有监管约束,第二种方法多用于无人机的检测。
一般情况下无人机的通信频率我们是不知道的,所以一种方法是扫描仪在其可能的频率上跳转监听,另一种方法是扫描无人机使用的特定波段。例如,大多数控制器和无人机每秒交换30次信号。因此,可以对100Hz频段下的信号进行分析,以寻找某些显著的特征。
优缺点
优点:
1. 不易受天气影响
2. 无需对准无人机就可以检测
3. 可以定位无人机和其操作员
缺点:
1.无法检测自动的无人机
2.在其他射频源的干扰下,性能会受到很大影响
3.在有障碍物的崎岖地形中,性能也会下降
相关论文
论文名称 | 基本信息 | 方法 | 补充 |
---|---|---|---|
Unauthorized Amateur UAV Detection Based on WiFi Statistical Fingerprint Analysis | BISIO I, IEEE Communications Magazine(1区), 2018, 56(4): 106-111. | 提出使用无线数据包嗅探器捕获无人机的传输,并提取统计特征来识别无机。 | 早期的无人机射频检测工作使用从捕获的射频信号中提取的统计特征来检测和分类无人机。 |
Micro-UAV Detection and Classification from RF Fingerprints Using Machine Learning Techniques | EZUMA M,arXiv: Signal Processing(2区),2019. | 提出一种被动无人机检测和分类系统,该系统使用ML算法,即KNN,判别分析(DA),支持向量机和神经网络(NN)。利用邻域分量分析(NCA)对特征集进行缩减,提高了模型的精度和鲁棒性 | |
UAV Detection and Localization Based on Multi-dimensional Signal Features | NIE W,IEEE Sensors Journal(2区), 2022: 5150-5162. | 射频传感器监控信道以捕获信道状态信息(CSI)对CSI数据进行处理,提取信号频谱(SFS)、小波能量熵(WEE)和功率谱熵(PSE)等特征。使用SVM、随机森林(RF)、朴素贝叶斯(NB)、集成学习(EL)和KNN等ML技术来检测无人机 | |
UAV Detection and Identification Based on WiFi Signal and RF Fingerprint | NIE W, IEEE Sensors Journal(2区), 2021: 13540-13550. | 上一篇文章的作者还提出了从CSI中提取其他特征,包括分形维数(FD)、轴向集成双谱(AIB)和平方集成双谱(SIB),然后应用PCA和NCA方法降维特征,并训练ML分类器(SVM、KNN)来执行检测任务。 | 上述工作使用传统的机器学习算法,由于RF信号的非线性,在实际的大型部署中通常不能提供足够的精度和鲁棒性。因此,最近采用了更复杂的深度学习方法。 |
RF-based drone detection and identification using deep learning approaches: An initiative towards a large open source drone database | L-SA’D M F, AL-ALI A, MOHAMED A, et al. Future Generation Computer Systems, 2019: 86-97. | 1.作者对使用深度学习来检测和识别无人机进行了可行性研究。2.为建立不同飞行模式下各种无人机射频信号数据库的目标提供了一个敲门砖3.系统地收集、分析并记录不同无人机在不同飞行模式下的原始射频信号 | GitHub |
Deep Learning and Blockchain with Edge Computing for 5G-Enabled Drone Identification and Flight Mode Detection | GUMAEI A, AL-RAKHAMI M, HASSAN M M, IEEE Network(2区), 2021: 94-100. | 在DroneRF数据集上训练的深度RNN (DRNN)模型。训练后的模型部署在多个边缘服务器上,用于无人机识别 | |
RF Signal-Based UAV Detection and Mode Classification: A Joint Feature Engineering Generator and Multi-Channel Deep Neural Network Approach | YANG S, LUO Y, MIAO W, et al. Entropy,2021: 1678. | 提出了一种联合特征工程生成器(FEG)和多通道深度神经网络(MC-DNN)方法。在FEG中,数据截断和归一化分离了不的频率成分,移动平均滤波器减少了射频信号中的异常值,并充分利用了数据集的细节。 |
总结
- 与其他方法相比,RF检测提供了各种优势,如无LOS要求、检测范围更长、对天气条件的鲁棒性和更好的精度
- 射频检测的精度性能仍有待研究,大多数关于射频检测的工作都是利用有限的数据集来评估无人机的检测和分类。这些研究中使用的实验也是在受限和半受控的环境中进行的。在实际部署中,射频检测的性能在很大程度上取决于来自其他射频源的干扰和崎岖地形对无人机射频信号的影响。射频检测仍然是一个需要更深入研究和实验现场验证的领域。
- 基于射频的检测是目前应用最广泛的无人机检测方法。
6. 基于雷达的方法
雷达发射无线电波(通常在微波频率范围内)并接收来自物体的反射波,接收器分析由移动物体引起的多普勒频移,以检测物体的存在、距离和速度。雷达可分为被动雷达和主动雷达。主动雷达能主动发送信号然后接收物体的反射波,而被动雷达则需要其他的信号源,如模拟电视、调频广播、蜂窝信号、数字音视频广播等。
主动雷达通常用于无人机探测,通常分为两类:脉冲雷达和调频连续波(FMCW)雷达。
- 脉冲雷达发射短脉冲并测量发射和接收信号之间的时间延迟来探测目标
- FMCW雷达发射连续波并测量发射和接收信号的频率差来确定与目标的距离。


优缺点
优点:
1.在所有方法中检测和定位精度最高
2.雷达能够探测到自主无人机和具有噪声抑制功能的无人机
3.不受雨、雾、灰尘等视觉条件的影响
缺点:
1.传统雷达被设计成探测具有大雷达截面积(RCS)的飞机,在探测无人机等较小物体方面存在不足。
2.雷达可能无法区分悬停(不改变位置)或缓慢移动的无人机和静态反射物体。
3.雷达也经常无法区分小型无人机和鸟类。它们在探测以不同速度无规律地成群飞行的无人机时也表现不佳
4.雷达部署成本高。雷达还使用需要监管许可的高频率;使雷达在许多应用中不适合无人机探测。
此外,不同类型的雷达的适用场景也不一样。由于测量非常短的时间所涉及的复杂性,脉冲雷达的建造通常更昂贵,并且在短距离上的检测精度较低。FMCW雷达相对便宜,且具有相对更好的距离分辨率(高达0.5m),并且在较短的距离上更准确。脉冲雷达能够很好地测量运动目标的速度,这对FMCW雷达来说是一个挑战。
相关论文
论文名称 | 基本信息 | 方法 | 补充 |
---|---|---|---|
Target Detection and Classification of Small Drones by Boosting on Radar Micro-Doppler | BJORKLUND S.2018 15th European Radar Conference (EuRAD), Madrid. 2018. | 提出了一种微多普勒雷达,使用增强分类器来区分无人机和鸟类。该雷达采用从时间速度图(TVDs)中提取的六个特征。这些特征也被称为Kim-Ling特征,包括基本速度、多普勒信号带宽、偏移量、无微多普勒带宽、多普勒信号强度归一化标准差和周期频率 | |
Localization and Activity Classification of Unmanned Aerial Vehicle Using mmWave FMCW Radars | RAI P K, IDSOE H, YAKKATI R R, et al. IEEE Sensors Journal(2区), 2021: 16043-16053. | 提出了一种基于毫米波调频连续波(FMCW)雷达的飞行器定位与活动分类方法。1. 利用测得的径向距离和到达的仰角估算飞行器的高度和距离地面雷达站的水平距离 2. 微多普勒特征则用于使用机器学习技术对无人机的活动进行分类 | |
Remotely Piloted Aircraft Detection with Persistent Radar | DE QUEVEDO A D, URZAIZ F I, MENOYO J G, et al. 2018 15th European Radar Conference (EuRAD), Madrid. 2018. | 作者进行了现场测试,演示了一种用于探测单个无人机的持久FMCW雷达系统。该系统采用单元平均恒虚警率(CA-CFAR)技术,在室外杂波环境下,探测距离可达2公里。 | |
Drone Detection and Classification Based on Radar Cross Section Signatures | SEMKIN V, YIN M, HU Y, et al. 2020 International Symposium on Antennas and Propagation (ISAP), Osaka, Japan. 2021. | 作者提出了一种利用RCS特征进行无人机检测和分类的方法。然而,这项工作仅限于模拟分析,实验细节也有限。 | |
Classification of bird and drone targets based on motion characteristics and random forest model using surveillance radar data | LIU J, XU Q Y.IEEE Access(3区),2021, 9: | 该方法将无人机和鸟类的飞行力学和行为模式表示为离散运动特征,推导出平均速度、速度标准差(SD)、航向标准差(SD)、机动性因子和振荡因子五个特征。 | |
Pursuing Drones With Drones Using Millimeter Wave Radar | DOGRU S, MARQUES L. IEEE Robotics and Automation Letters(2区), 2020, 5(3): 4156-4163. | 作者提出在一架无人机上部署雷达来跟踪其他未经授权的无人机。然而,这是基于只有一架入侵者无人机的假设,这有点不太实际。 |
总结
- 主要使用FMCW雷达进行无人机探测,因为FMCW雷达在较短距离(50-100米)更准确,而脉冲雷达通常在较短距离(50-100米)失明。
- 尽管脉冲雷达在远距离上比FMCW雷达相对更准确,但脉冲雷达的硬件复杂性使得其应用较少。
- 雷达的使用需要监管许可,很难部署并且需要高发射功率,需要更多的空间,维护成本也很高。因此雷达在民用的检测中不会大规模使用。
7. 基于视觉的方法
视觉检测系统通常使用日光摄像机和红外或热成像技术来捕捉无人机的图像或视频,然后使用基于计算机视觉的物体检测技术来检测其中的无人机。
基于视觉的无人机检测有两种方法:1.传统方法 2.基于深度学习的方法
传统方法一般有两步:
一、手动提取HOG、SIFT等特征
二、使用机器学习方法对提取到的特征进行分类
基于深度学习的方法不需要手动提取特征,它们可以利用CNN等技术自动提取特征。因此,可以使用深度学习来训练端到端的无人机检测深度学习模型,并且精度很高。
优缺点
优点: 视觉无人机检测可以实现几个功能,如存在检测、识别、跟踪甚至有效载荷检测。
缺点:
1.摄像机需要瞄准无人机,若想实现360°覆盖的话需要多个摄像头,这样就增加了成本,且检测的距离有限
2.受天气影响严重,需要使用红外或者热成像相机,进一步增加了成本。
3.当无人机高速移动时,成像模糊,对检测结果有影响
相关论文
论文名称 | 基本信息 | 方法 | 补充 |
---|---|---|---|
Field Test Validations of Vision-based Multi-camera Multi-drone Tracking and 3D Localizing with Concurrent Camera Pose Estimation | SIE N J, SRIGRAROM S, HUANG S. 2021 6th International Conference on Control and Robotics Engineering (ICCRE), Beijing, China.2021. | 提出了一种使用计算机视觉的多架无人机识别、定位和跟踪系统。该系统使用基于运动的blob检测进行特征提取,并使用kernel - ized Correlation Filter (KCF)和Discriminative Correlation Filter (DCF)进行检测。在两架无人机上进行了现场检测和跟踪试验。 | github |
Vision-Based Detection and Distance Estimation of Micro Unmanned Aerial Vehicles | GÖKÇE F, ÜÇOLUK G, ŞAHIN E, et al. Sensors(3区), 2015: 23805-23846. | 作者使基于人工提取的特征,即Haar-like特征,HOG,局部二进制模式(LBP),使用级联增强分类器来检测图像中的无人机,利用支持向量机来估计相机和无人机之间的距离 | |
Target Tracking of Moving and Rotating Object by High-Speed Monocular Active Vision | LIU Y, SUN P, NAMIKI A. IEEE Sensors Journal(2区), 2020, 20(12): 6727-6744. | 对像素后验3D (PWP3D)框架进行了改进,提出了一种用于高速目标跟踪和位姿估计的快速PWP3D算法。 | 以上为基于传统机器学习的方法 |
Drone detection using YOLOv3 with transfer learning on NVIDIA Jetson TX2 | WEI XUN D T, LIM Y L, SRIGRAROM S. 2021 Second International Symposium on Instrumentation, Control, Artificial Intelligence, andRobotics (ICA-SYMP), Bangkok, Thailand. 2021. | 训练了一个用于检测无人机的YOLOV3模型,并部署于NVIDIA Jetson TX2上进行实时检测。 | github 一个很像的,不清楚是不是 |
A comparison of convolutional object detectors for real-time drone tracking using a PTZ camera | PARK J, KIM D H,SHIN Y S, et al. 2017 17th International Conference on Control, Automation and Systems (ICCAS), Jeju. 2017. | 该系统使用五种流行的CNN模型(YOLOv2, MobileNet , InceptionV2 , R-FCN和R-CNN)在包含11种不同无人机模型图像的数据集上进行训练。系统使用PTZ相机进行检测,当检测到目标时根据信息控制PTZ相机追踪目标 | |
Tracking and Relative Localization of Drone Swarms With a Vision-Based Headset | PAVLIV M, SCHIANO F, REARDON C, et al. IEEE Robotics and Automation Letters(2区), 2021: 1455-1462. | 使用了配备摄像头和惯性测量单元(IMU)的耳机。摄像机捕获场景的图像流,并将其馈送给CNN模型以检测无人机。当检测到无人机时,IMU用于跟踪无人机。 | |
Air-to-Air Visual Detection of Micro-UAVs: An Experimental Evaluation of Deep Learning | ZHENG Y, CHEN Z, LV D, et al. IEEE Robotics and Automation Letters(2区), 2021: 1020-1027. | 利用无人机来检测无人机,由于之前的无人机数据集大多是从地面拍摄得到的不适用于该方法,因此作者用无人机制作了一个更大更全面的基于无人机视角的数据 | 大多数基于dl的视觉无人机检测方案使用从地面捕获的无人机图像数据集。这些数据集适用于PTZ相机地面探测系统。然而,PTZ摄像机不适合在狭小的环境中使用,因为经常会跟丢无人机(超出视野?)。 |
总结
- 尽管DL的发展使得基于视觉的无人机检测精度得到提高,但确无法无人机提供准确的坐标位置,这样就难以对无人机进行干扰
- 基于视觉的方法十分容易受到天气的影响,如果成本不是主要的制约因素,那么红外相机的结合可以用来应对较差的光照条件
- 尽管如此,由于易于部署,高分辨率相机的可负担性以及可以在边缘设备上运行深度学习模型的有前途的应用,视觉检测仍具吸引力。视觉检测也是最适合检测多架无人机的方法,可以在不增加系统成本的情况下,使用高分辨率图像准确检测大量无人机,准确计数。
8.四种方法对比
9. 传感器融合
前面的四种方法都无法单独解决所有场景下的无人机检测。因此,人们开始尝试将传感器融合,以期实现精度更高、鲁棒性更强的无人机检测。传感器融合大致分为两种方法:
一、并行处理:首先,各个传感器分别获取无人机数据或特征,得到数据或特征后有两种可能 1.各传感器的数据融合然后使用一个模型进行检测 2. 用各传感器的数据分别进行预测,然后将各结果取平均或加权平均,得到最终结果。
二、 级联处理:先用一个传感器获取数据并对无人机进行检测,然后再用其他传感器得到的数据进行检测调整,从而得到更精确的检测效果。
例如,可以使用RF传感器来检测无人机在较长距离处的存在,并估计到达角(AoA)。然后,信息被馈送到视觉检测部分,相机沿着到达的无人机的方向旋转,并根据与相机的距离调整其变焦水平。但如果RF传感器提供的信息不准确,则相机将无法执行准确的检测。
相关论文
论文名称 | 基本信息 | 方法 | 补充 |
---|---|---|---|
Drone Detection Based on an Audio-Assisted Camera Array | LIU H, WEI Z, CHEN Y, et al. 2017 IEEE Third International Conference on Multimedia Big Data (BigMM), 2017. | 作者提出了一个由3个麦克风和30个摄像头组成的系统,该系统可以持续监控给定区域并产生音频和视频流。然后对音频和视频流进行处理以提取特征,然后将这些特征馈送到分类器以执行检测。结果表明,音频辅助系统(95.74%)显著提高了视觉检测的性能 | |
Real-Time Drone Detection and Tracking With Visible, Thermal and Acoustic Sensors | SVANSTROM F, ENGLUND C,ALONSO-FERNANDEZ F. 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy. 2021. | 开发了一种具有传感器融合扩展的无人机检测和跟踪系统,以基于多个传感器(声学传感器、热像仪和日光相机)的输出执行复杂的检测决策,并可以配置传感器的选择以及所选传感器的输出权重。然而,由于传感器的选择和融合设置广泛,混合检测的精度性能没有得到评估。 | github仅数据集 |
Millimeter wave radar for perimeter surveillance and detection of MAVs (Micro Aerial Vehicles) | CARIS M, JOHANNES W, STANKO S, et al. 2015 16th International Radar Symposium (IRS), 2015. | 扫描监视雷达系统(SSRS)先检测无人机,然后用摄像头进行进一步的确认。但作者只提出了系统设计,但没有详细研究该系统的性能。 | |
Sensor Fusion for Drone Detection | ALEDHARI M, RAZZAK R, PARIZI R M, et al. 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring),Helsinki, Finland. 2021. | 该系统使用深度神经网络(DNN)处理射频数据,使用卷积神经网络(CNN)处理图像数据。之后,来自cnn和DNN的特征被连接并输入到另一个DNN中用于预测无人机,准确率为75%然而,系统的准确性未和使用单个传感器的检测进行比较。 |
除此以外,还有一些特别的检测方法
论文名称 | 基本信息 | 方法 | 补充 |
---|---|---|---|
Detecting Spying Drones | BEN NETANEL R, NASSI B, SHAMIR A, et al. IEEE Security & Privacy, 2021, 19(1): 65-73. | 作者提出了一种利用无人机捕获的视频中的水印检测来检测间谍无人机的系统。该系统使用LED灯进行周期性刺激,这种刺激出现在间谍无人机拍摄的任何视频中。对无人机发送给控制器的视频流量进行拦截并分析是否存在水印。 | |
V-RBNN Based Small Drone Detection in Augmented Datasets for 3D LADAR System | KIM B, KHAN D, BOHAK C, et al. Sensors, 2018, 18(11): 3825. | 该系统即使在夜间光线较暗的情况下,也能探测到2公里范围内的无人机。然而,基于激光雷达的系统不能区分无人机和鸟类,这是一个主要的缺点。 |
总结
1.传感器融合的一种更常见的方法是使用两种传感技术及其组合输出用于检测决策。另一种方案是使用远程非直瞄探测方案(例如,声学、RF或雷达)生成早期探测警报,然后使用其输出触发第二传感器(通常是相机)调整其配置,如方向、变焦水平等。
2.传感器融合的主要缺点包括更高的系统复杂性、计算复杂性和部署成本,各传感器的协调配合是一件难事。
10. 未来的方向
一、提出针对特定场景的方法
二、提出基于传感器融合的混合方法
三、作者选择全都要,即满足最低要求的特定场景下的混合方法
最小要求包括以下信息:
- 检测范围:如水平距离、高度
- 环境:如在有障碍物、低光照、恶劣天气等条件下检测
- 识别:即无人机的型号等(?这很有必要吗)
四、在所有方法中,作者认为基于视觉的方法是最有潜力的,原因有以下几点:
- 将摄像头安装在防范区域的边缘就可以在合适的距离上检测无人机
- 可以通过调整摄像机的安装位置和角度或增加摄像机数量达到多方位检测的目的
- 红外相机可以在恶劣天气下检测无人机
- 用摄像头可以更好地识别无人机的类型和载荷等信息
五、同时,现在还缺少一个大规模的包含了声音、射频和图像等数据的多传感器融合数据集。这样一个数据集将能够带来检测性能更大的进步。