给你一棵根节点为 0 的 二叉树 ,它总共有 n 个节点,节点编号为 0 到 n - 1 。同时给你一个下标从 0 开始的整数数组 parents 表示这棵树,其中 parents[i] 是节点 i 的父节点。由于节点 0 是根,所以 parents[0] == -1 。
一个子树的 大小 为这个子树内节点的数目。每个节点都有一个与之关联的 分数 。求出某个节点分数的方法是,将这个节点和与它相连的边全部 删除 ,剩余部分是若干个 非空 子树,这个节点的 分数 为所有这些子树 大小的乘积 。
请你返回有 最高得分 节点的 数目 。
示例 1:
example-1
输入:parents = [-1,2,0,2,0]
输出:3
解释:
- 节点 0 的分数为:3 * 1 = 3
- 节点 1 的分数为:4 = 4
- 节点 2 的分数为:1 * 1 * 2 = 2
- 节点 3 的分数为:4 = 4
- 节点 4 的分数为:4 = 4
最高得分为 4 ,有三个节点得分为 4 (分别是节点 1,3 和 4 )。
示例 2:
example-2
输入:parents = [-1,2,0]
输出:2
解释:
- 节点 0 的分数为:2 = 2
- 节点 1 的分数为:2 = 2
- 节点 2 的分数为:1 * 1 = 1
最高分数为 2 ,有两个节点分数为 2 (分别为节点 0 和 1 )。
提示:
n == parents.length
2 <= n <= 105
parents[0] == -1
对于 i != 0 ,有 0 <= parents[i] <= n - 1
parents 表示一棵二叉树。
关键是审题,深度有限搜索,按照要求找节点分数
分析:
自愧不如,总觉得说不清楚,就把叶总的搬过来了。23333
class Solution {
public:
long maxScore = 0;
int cnt = 0;
int n;
vector<vector<int>> children;
int dfs(int node) {
long score = 1;
int size = n - 1;
for (int c : children[node]) {
int t = dfs(c);
score *= t;
size -= t;
}
if (node != 0) {
score *= size;
}
if (score == maxScore) {
cnt++;
} else if (score > maxScore) {
maxScore = score;
cnt = 1;
}
return n - size;
}
int countHighestScoreNodes(vector<int>& parents) {
this->n = parents.size();
this->children = vector<vector<int>> (n);
for (int i = 0; i < n; i++) {
int p = parents[i];
if (p != -1) {
children[p].emplace_back(i);
}
}
dfs(0);
return cnt;
}
};