点割集、边割集

本文介绍了图论中的两个重要概念——点割集和边割集,它们分别是最小的使图从连通变为非连通的节点和边的集合。割点和割边的概念基于这两个集合,对于理解网络结构和算法设计至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点割集:对图G来说删去点割集的真子集,依旧连通。也就是说,点割集是删去使得图从连通变成非连通的最小节点的集合。

边割集:对图G来说删去边割集的真子集,依旧连通。也就是说,点割集是删去使得图从连通变成非连通的最小边的集合。

如果点割集只有一个节点,这割节点就叫做割点:

如果边割集只有踢一条边,这割节点就叫做割边:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二十5画生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值