目录
题一 最小花费爬楼梯
1、算法解析
1)确定状态:
确定状态是在干什么?
就是确定状态dp数组中的值代表什么含义。根据分析,我们发现:
状态表的dp[i]值是到达该位置的最小花费
2)状态转移方程:
一般来说,状态转移方程,就是根据i位置之前或者i位置之后,来推导出i的值
只要你能根据之前或或者之后的值来推导出i的值
那么,状态转移方程就出来了
但是,怎么推?
这个就要就题目而言
但是,大体的思路是这样的:根据最近的状态来划分问题
在这个题目中,我们第 i 位置的值,需要前面两个位置的值来确定,其分析过程如下:
3)初始化:
初始化就是保证,在我们进行填表的时候不越界
例如说,我要求dp[0]/dp[1]位置的值,需要前面的位置,但是此时明显已经越界
因此,这两个位置需要单独处理
4)填表顺序:
什么是填表顺序?
很好理解,例如说本题
i位置值得求解,需要前面两个位置的值已经存在才能求解
因此,也就是说在算i位置时,i-1 和 i-2 位置已经填了,已经有值了
所以,在这个题中,我们的填表顺序应该是从前往后,因为后面的值的求解需要前面的值
5)返回值:
因为我们要的是跨过所有台阶,所以这里的返回值是一维数组第n个位置的值
因此,返回值即dp[n]
2、代码
class Solution {
public:
int minCostClimbingStairs(vector<int>& cost) {
//创建dp表(我们要返回n位置,多创建一个位置)
int n = cost.size();
vector<int> dp(n+1);
//初始化(走到0和走到1,是不需要花费的)
dp[0] = 0;
dp[1] = 0;
//填表
for(int i = 2; i<=n; ++i)
{
dp[i] = min((dp[i-1] + cost[i-1]), (dp[i-2] + cost[ i-2 ]));
}
//确定返回值
return dp[n];
}
};
题二 第N个泰波那锲数
1137. 第 N 个泰波那契数 - 力扣(LeetCode)
1、算法解析
你自己根据我第一题的过程,自己照着求解一般,然后写出代码。
1、确定状态
确定状态是在干什么?
就是确定状态dp数组中的值代表什么含义
dp表里某个位置值的状态就是题目的解
2、状态转移方程
dp[i] = dp[i-1] + dp[i-2] + ap[i-3];题目都直接给了
3、初始化
保证填表的时候越界
根据状态表示方程进行填表
状态方程是dp[i] = dp[i-1] + dp[i-2] + ap[i-3];
因此当i小于3的时候,越界
因此,初始化状态表,dp[0] = 0;dp[1] = ap[2] = 1;
4、填表顺序
从左往右填表,因为第n个位置的值,需要前面三个值已经计算好。
5、返回值
结果是第n个位置的值
所以,返回值就是dp[n](因此需要多创建一个位置的空间)
2、代码
class Solution {
public:
int tribonacci(int n) {
if(n == 0) return 0;
if(n == 1|| n == 2) return 1;
//1、创建dp表
vector<int> dp(n + 1);
//2、初始化
dp[0] = 0;
dp[1] = dp[2] = 1;
//3、填表
for(int i = 3; i<=n; i++ )
dp[i] = dp[i-1] + dp[i-2] + dp[i-3];
//4、确定返回值
return dp[n];
}
};
3、空间优化版本
//空间优化版本
class Solution {
public:
int tribonacci(int n) {
if(n == 0) return 0;
if(n == 1|| n == 2) return 1;
int a = 0, b = 1, c = 1, d = 0;
for(int i = 3; i <=n;i++)
{
d = a+b+c;
a = b;
b = c;
c = d;
}
return d;
}
};
题三 三步问题
面试题 08.01. 三步问题 - 力扣(LeetCode)
1、算法解析
1、确定状态:
定义 dp[i] 数组中的值到底表示什么意思?
很简单,根据题目,就是到达该台阶一共有多少种走法。
我们的目标是求解 dp[n],即上到第 n 阶台阶的方式数量。
2、状态转移方程:
考虑小孩每次可以走 1 阶、2 阶或 3 阶:
因此,状态转移方程为:
dp[i] = dp[i-1] + dp[i-2] + dp[i-3]
3、初始化:
dp[0] = 1:上到第 0 阶只有一种方式,就是不走任何台阶。
dp[1] = 1:上到第 1 阶只有一种方式,就是从地面直接走一阶。
dp[2] = 2:上到第 2 阶有两种方式,可以走两次一阶或者一次两阶。
为什么初始化这三个位置?因为他们需要前面三个位置的值,如果不初始化,会越界。
4、填表顺序:
从 dp[3] 开始一直填充到 dp[n]。
5、返回值:
返回 dp[n],因此要多创建一个位置的空间,同时由于结果可能很大,要对 dp[n] 模 1000000007 取余。
2、代码
class Solution {
public:
int waysToStep(int n) {
if(n == 1) return 1;
if(n == 2) return 2;
// 1、创建dp表
vector<int> dp(n + 1);
// 2、初始化
dp[0] = 1;
dp[1] = 1;
dp[2] = 2;
// 3、填表
for(int i = 3; i<n+1; ++i)
dp[i] = ((dp[i-1] + dp[i-2]) % 1000000007 + dp[i-3]) % 1000000007;
// 4、确定返回值
return dp[n];
}
};
题四 解码方法
1、算法解析
1、确定状态:
定义 dp[i] 数组中的值到底表示什么意思:dp[i]的值,就是以i为结尾的编码串的最多解码方式
2、状态转移方程:
因此,状态转移方程为:
dp[i] = dp[i-1] + dp[i-2]
3、初始化:
为什么初始化这几个位置?因为他们需要前面三个位置的值,如果不初始化,会越界。
4、填表顺序:
从 dp[3] 开始一直填充到 dp[n]。
5、返回值:
返回 dp[n]
2、代码
class Solution {
public:
int numDecodings(string s) {
//1、创建dp表
int n = s.size();
vector<int> dp(n);
//只有一位
dp[0] = s[0] == '0' ? 0 : 1;
if(n == 1 ) return dp[0];
//2、初始化
//根据判断条件进行初始化
if(s[0] != '0' && s[1] != '0') dp[1]++;
int m = (s[0] - '0')*10 + (s[1] - '0');//组合编码
if(m>=10 && m <= 26)
dp[1] ++;
//3、填表
for(int i = 2; i<n; ++i)
{
//i位置单独编码
if( s[i] != '0') dp[i] += dp[i-1];
//i和i-1位置组合编码
int x = (s[i-1] - '0')*10 + (s[i] - '0');
if(x >= 10 && x <= 26) dp[i] += dp[i-2];
}
//4、返回值
return dp[n-1];
}
};