传染病模型

**

数学建模模型:传染病模型

**
问题描述:1.描述传染病的传播过程
2.分析受感染人数的变化规律
3.预报传染病高潮到来的时刻

模型一:设已感染人数为i(t),t为时间,每个病人有效接触人数(足以致病)为r
模型建立:i(t+△t)-i(t)=r△ti*(t); —>(化为微分方程)
di/dt=ri(t) —>di/i(t)=rdt ---->(两边求积分) —>i(t)=i0*e(rt);
其中i0表示的是最初的感染人数

若有效接触的是病人,则不能使病人数增加,所以必须区分已感染(病人)已感染者(健康人)

模型二:设总人数为N不变,i(t)为感染人数所占比;s(t)为健康人数占比;s(t)+i(t)=1;接触人数为r
模型建立:N[i(t+△t)-i(t)]=rs(t)Ni(t)△t; —>(化为微分方程)
di/dt=rsi —>di/i(1-i)=r*dt ---->(两边求积分) —>
i(t)=1/[1+(1/i0-1)*e(-rt)]
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值