python人工智能教程——pycharm加载解释器

本文介绍如何在PyCharm中配置Anaconda环境,包括加载已安装的Python解释器及包,确保可以在PyCharm中使用Anaconda环境中安装的库进行编程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

当我们通过Anaconda将我们需要的环境和包安装好后,我们就需要在pycharm中加载python解释器了。通俗理解就是将创建好的环境里的python和包加载到pycharm里。
如下所示,按数字顺序点击。
请添加图片描述

到这个界面后先点击“conda环境”,再点击“现有环境”,一般来讲解释器的路径会智能地给我们把新创建环境中的python解释器的路径标上。但如果没有,点击右侧的三个点。
请添加图片描述

找到Anaconda的安装路径里的envs文件夹,从里面找到我们新创建的环境的名称,然后找到里面的python.exe,再点击确定就ok了。
请添加图片描述

效果如下:
请添加图片描述

当我们点击确定后可以看到右下角框选出来的地方,它表示pycharm正在加载这个环境。
请添加图片描述

我们的新环境中刚刚安装了numpy包,我们来测试一下。
请添加图片描述

由此我们就可以开始调包进行编程了。
请添加图片描述

### PyCharm中的AI开发工具和插件 PyCharm 提供了一系列强大的功能来支持人工智能 (AI) 和机器学习项目的开发。除了基本的编辑器特性外,还集成了多个专门针对数据科学和 AI 开发设计的功能模块。 #### 1. Jupyter Notebook 集成 Jupyter Notebook 是一种广泛使用的交互式计算环境,特别适合于探索性和迭代性的数据分析工作流。通过内置的支持,在 PyCharm 中可以直接创建、运行并管理 Jupyter Notebooks[^3]。 ```python from IPython.display import display, HTML display(HTML("<h1>Hello from a notebook cell!</h1>")) ``` #### 2. 数据分析库集成 为了简化数据处理流程,PyCharm 支持多种流行的数据科学框架如 Pandas、NumPy 等,并提供了智能感知以及快速导航到文档的能力。这使得开发者可以更高效地编写代码而无需频繁查阅外部资料[^4]。 #### 3. TensorFlow 插件 TensorFlow 是由 Google 推出的一个开源深度学习平台。官方提供的 PyCharm 插件能够帮助用户更好地利用该框架进行模型训练与评估等工作。它不仅增强了语法高亮显示效果,还包括了对 Keras API 的全面支持[^5]。 #### 4. MLflow 跟踪实验结果 MLflow 是一个用于管理和部署机器学习生命周期各个阶段的应用程序。借助此插件可以在 PyCharm 内部记录参数配置、度量指标以及其他元数据信息;从而方便团队成员之间共享研究成果或重现特定版本下的性能表现[^6]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值