12天养成好习惯_第四天
今天主要学习离散数学的相关知识
命题逻辑的基本概念
公式的分类 (设A为任一命题公式):
- 若A在它的各种赋值下取值均为真 , 则称A是重言式或永真式 .
- 若A在它的各种赋值下取值均为假 , 则称A是矛盾式或永假式 .
- 若A不是矛盾式 , 则称A是可满足式
- 重要等值式:
5. 极大项_合取_成真赋值_m; 极小项_析取_成假赋值_M
6. 主析取范式: 所有简单合取式都是极小项的析取范式
7. 主合取范式: 所有简单析取式都是极大项的的合取范式
命题逻辑的推理理论:
中心思想: 前提的合取蕴涵结论
- 附加前提证明法: 适用于结论式蕴涵式
知识点: 附加前提证明法- 等值演算法: 直接在前提上进行演算 得到结论知识点: 等值演算法
- 真值表法 : 画真值表
- 主析取范式法: 写出其主析取范式 判断其是否为重言式
一阶逻辑的基本概念
- 只有…(设为P) , 才…(设为Q): 符号化:
Q - > P- 如果…(设为P) , 则 … (设为Q) : 符号化:
P -> Q
一阶逻辑符号化(假设 p ,q都是命题):
其结果是P->q的形式:
1. 只要P,则q
2. P,仅当 q
其结果是 q->p的形式:
1. 除非p 才能q
2.除非p, 否则不能q
3. 只有p, 才能 q
一些零碎知识:
- 哑元: 若公式A,B共含有p1,p2,p3,p4...pn , 而A 或 B 不全含这些命题变项 , 则将与A的取值不相关的变项称为A的哑元
- 排斥或:(p∧﹁q)V(﹁p∧q)
相容或:pVq
- 重要等值式.吸收律:
- A并(A交B) == A ;
- A交(A并B) == A;