“21天好习惯”第一期-4

12天养成好习惯_第四天

今天主要学习离散数学的相关知识

命题逻辑的基本概念

公式的分类 (设A为任一命题公式):

  1. 若A在它的各种赋值下取值均为真 , 则称A是重言式或永真式 .
  2. 若A在它的各种赋值下取值均为假 , 则称A是矛盾式或永假式 .
  3. 若A不是矛盾式 , 则称A是可满足式

  4. 重要等值式:重要等值式描述
    5. 极大项_合取_成真赋值_m; 极小项_析取_成假赋值_M
    6. 主析取范式: 所有简单合取式都是极小项的析取范式
    7. 主合取范式: 所有简单析取式都是极大项的的合取范式
命题逻辑的推理理论:

中心思想: 前提的合取蕴涵结论

  1. 附加前提证明法: 适用于结论式蕴涵式
    知识点: 附加前提证明法
  2. 等值演算法: 直接在前提上进行演算 得到结论知识点: 等值演算法
  3. 真值表法 : 画真值表
  4. 主析取范式法: 写出其主析取范式 判断其是否为重言式
一阶逻辑的基本概念
  1. 只有…(设为P) , 才…(设为Q): 符号化:
    Q - > P
  2. 如果…(设为P) , 则 … (设为Q) : 符号化:
    P -> Q
一阶逻辑符号化(假设 p ,q都是命题):

其结果是P->q的形式:
1. 只要P,则q
2. P,仅当 q

其结果是 q->p的形式:
1. 除非p 才能q
2.除非p, 否则不能q
3. 只有p, 才能 q

一些零碎知识:
  1. 哑元: 若公式A,B共含有p1,p2,p3,p4...pn , 而A 或 B 不全含这些命题变项 , 则将与A的取值不相关的变项称为A的哑元
  2. 排斥或:(p∧﹁q)V(﹁p∧q)
    相容或:pVq
  1. 重要等值式.吸收律:
  2. A并(A交B) == A ;
  3. A交(A并B) == A;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值