汉诺塔
题目
如图所示的三根针,其中A针上穿好了由大到小的64片金片,不论白天黑夜,总有一个和尚在按照下面的法则移动金片:一次只移动一片,不管在哪根针上,小片必须在大片上面。和尚们预言,当所有的金片都从A针移到C针上时,世界就将在一声霹雳中消失,这就是所谓的汉诺塔。请编程求出将A针上所有金片移到C上的步骤。
输入
标准输入,一个整数N,表示有N(N不超过5)个金片:
输出
标准输出,输出所有步骤,每一步骤占一行。
#include<bits/stdc++.h>
using namespace std;
void h(int n,char ch1,char ch2,char ch3){
if(n==1) {
cout<<ch1<<"->"<<ch3<<endl;return;
}
h(n-1,ch1,ch3,ch2);
cout<<ch1<<"->"<<ch3<<endl;
h(n-1,ch2,ch1,ch3);
}
int main(){
int n;
cin>>n;
h(n,'A','B','C');
return 0;
}
说明
#当只有一个时;相当于直接从一移到三。
#当有两个时;可以将第1个小的移到二;再把剩下的大的移到三;然后把在二的那个小的移到三。(借助了二塔)
#当n=3;类似的先把上面两个借助三塔移到二塔,再把3这个最大的移到三塔;这样就可以把二塔是上面的两个通过借助一塔移到三塔了。
。。。。。。
#有n个时,先把(n-1)个借助三塔移到二塔上面来,再把最大的移到三塔,再借助一塔,把在二塔上面的(n-1)个移到三塔来。
【注】:上面的只是一种想法,可以通过代码实现,但是n不能太大;毕竟这个递归运算量比较大。
input
3
output
A->C
A->B
C->B
A->C
B->A
B->C
A->C