为了
根据以上「元素旋转公式」,考虑遍历矩阵,将各元素依次写入到旋转后的索引位置。但仍存在问题:在写入一个元素 matrix[i][j]→matrix[j][n−1−i]matrix[i][j] \rightarrow matrix[j][n - 1 - i]matrix[i][j]→matrix[j][n−1−i] 后,原矩阵元素 matrix[j][n−1−i]matrix[j][n - 1 - i]matrix[j][n−1−i] 就会被覆盖(即丢失),而此丢失的元素就无法被写入到旋转后的索引位置了。
为解决此问题,考虑借助一个「辅助矩阵」暂存原矩阵,通过遍历辅助矩阵所有元素,将各元素填入「原矩阵」旋转后的新索引位置即可
class Solution {
public:
void rotate(vector<vector<int>>& matrix) {
int n=matrix.size();
vector<vector<int>>temp;
temp=matrix;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
{
matrix[j][n-1-i]=temp[i][j];
}
}
};