48. 旋转图像
给定一个 n × n 的二维矩阵 matrix
表示一个图像。请你将图像顺时针旋转 90 度。
你必须在** 原地** 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。
示例 1:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-GbqI1NZV-1669627716858)(C:\Users\luo’xin\AppData\Roaming\Typora\typora-user-images\image-20221128131225342.png)]
输入:matrix = [[1,2,3],[4,5,6],[7,8,9]]
输出:[[7,4,1],[8,5,2],[9,6,3]]
示例 2:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-0yFZVfSr-1669627716859)(C:\Users\luo’xin\AppData\Roaming\Typora\typora-user-images\image-20221128131243709.png)]
输入:matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]]
输出:[[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]
提示:
n == matrix.length == matrix[i].length
1 <= n <= 20
-1000 <= matrix[i][j] <= 1000
我的想法就是一圈一圈的旋转,只需要一个额外的空间就行。把每一圈的旋转看作一个单位,对于奇数阶矩阵来说需要旋转(size-1)/2圈,对于偶数阶矩阵来说需要旋转size/2圈,其实总的来说就是旋转size/2圈。
就拿示例二来说,对于最外圈,我们需要将他扭转三次,对于内圈来说只需要扭转一次,观察可知扭转的次数等于size-1.
经过不断的调试,终于把代码写出来了,时间上超过46%的用户。
void rotate(vector<vector<int>>& matrix) {
int size = matrix.size();
int len = size;
int rotate_times = size/2;
int tmp;
//圈数
for (int i = 0; i