71:变幻的矩阵
描述
有一个N x N(N为奇数,且1 <= N <= 10)的矩阵,矩阵中的元素都是字符。这个矩阵可能会按照如下的几种变幻法则之一进行变幻(只会变幻一次)。现在给出一个原始的矩阵,和一个变幻后的矩阵,请编写一个程序,来判定原始矩阵是按照哪一种法则变幻为目标矩阵的。
1. 按照顺时针方向旋转90度;
如:
1 2 3 7 4 1 4 5 6 变幻为 8 5 2 7 8 9 9 6 3 2. 按照逆时针方向旋转90度; 如: 1 2 3 3 6 9 4 5 6 变幻为 2 5 8 7 8 9 1 4 7 3. 中央元素不变(如下例中的 5),其他元素(如下例中的3)与“以中央元素为中心的对应元素”(如下例中的7)互换; 如: 1 2 3 9 8 7 4 5 6 变幻为 6 5 4 7 8 9 3 2 1 4. 保持原始矩阵,不变幻; 5. 如果从原始矩阵到目标矩阵的变幻,不符合任何上述变幻,请输出5
输入
第一行:矩阵每行/列元素的个数 N;
第二行到第N+1行:原始矩阵,共N行,每行N个字符;
第N+2行到第2*N+1行:目标矩阵,共N行,每行N个字符;
输出
只有一行,从原始矩阵 到 目标矩阵 的所采取的 变幻法则的编号。
样例输入
5 a b c d e f g h i j k l m n o p q r s t u v w x y y x w v u t s r q p o n m l k j i h g f e d c b a
样例输出
3
import java.util.*;
public class Main{
public static void main(String[] args) {
Scanner in=new Scanner(System.in);
int n=in.nextInt();
String a[][]=new String[n][n];
String b[][]=new String[n][n];
int sum1=0,sum2=0,sum3=0,sum4=0;
for(int i=0;i<n;i++) {
for(int j=0;j<n;j++) {
a[i][j]=in.next();
}
}
for(int i=0;i<n;i++) {
for(int j=0;j<n;j++) {
b[i][j]=in.next();
}
}
for(int i=0;i<n;i++) {
for(int j=0;j<n;j++) {
if(a[n-1-j][i].equals(b[i][j])){
sum1++;
}
if(a[j][n-1-i].equals(b[i][j])) {
sum2++;
}
if(a[n-1-i][n-1-j].equals(b[i][j])) {
sum3++;
}
if(a[i][j].equals(b[i][j])) {
sum4++;
}
}
}
if(sum1==n*n) {
System.out.println("1");
}
else if(sum2==n*n) {
System.out.println("2");
}
else if(sum3==n*n) {
System.out.println("3");
}
else if(sum4==n*n) {
System.out.println("4");
}
else {
System.out.println("5");
}
}
}
72:计算矩阵边缘元素之和
描述
输入一个整数矩阵,计算位于矩阵边缘的元素之和。所谓矩阵边缘的元素,就是第一行和最后一行的元素以及第一列和最后一列的元素。
输入
第一行分别为矩阵的行数m和列数n(m < 100,n < 100),两者之间以一个空格分开。
接下来输入的m行数据中,每行包含n个整数,整数之间以一个空格分开。
输出
输出对应矩阵的边缘元素和
样例输入
3 3 3 4 1 3 7 1 2 0 1
样例输出
15
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int m = in.nextInt();
int n = in.nextInt();
int sum = 0;
int[][] a = new int[m][n];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
a[i][j] = in.nextInt();
if (i == 0 || j == 0 || i == m - 1 || j == n - 1) {
sum += a[i][j];
}
}
}
System.out.println(sum);
}
}
73:计算鞍点
描述
给定一个5*5的矩阵,每行只有一个最大值,每列只有一个最小值,寻找这个矩阵的鞍点。
鞍点指的是矩阵中的一个元素,它是所在行的最大值,并且是所在列的最小值。
例如:在下面的例子中(第4行第1列的元素就是鞍点,值为8 )。
11 3 5 6 9
12 4 7 8 10
10 5 6 9 11
8 6 4 7 2
15 10 11 20 25
输入
输入包含一个5行5列的矩阵
输出
如果存在鞍点,输出鞍点所在的行、列及其值,如果不存在,输出"
最低0.47元/天 解锁文章
1237

被折叠的 条评论
为什么被折叠?



