代码随想录算法训练营第十五天 | 二叉树的层序遍历 LeetCode226 翻转二叉树 LeetCode101 对称二叉树

二叉树的层序遍历

文章链接:二叉树的层序遍历

视频链接:二叉树的层序遍历

LeetCode102 二叉树的层序遍历

题目链接:二叉树的层序遍历

视频链接:二叉树的层序遍历

文章链接:二叉树的层序遍历

思路

利用队列这个数据结构来记录每一层遍历的元素,并记录在当前层时队列的大小,当前层元素出队,并让其左右孩子入队,更新队列的大小,恰好队列的大小就是当前层元素的个数,遍历这个队列时,只需要弹出队列大小个数的元素,弹出的同时并让自己的左右孩子入队且队列的大小也要同步更新,当第二层遍历完时,第三层所有结点都已放入队列中。

代码
class Solution {
public:
    vector<vector<int>> levelOrder(TreeNode* root) {
        queue<TreeNode*> que;
        if (root != NULL) que.push(root);
        vector<vector<int>> result;
        while (!que.empty()) {
            int size = que.size();
            vector<int> vec;
            // 这里一定要使用固定大小size,不要使用que.size(),因为que.size是不断变化的
            for (int i = 0; i < size; i++) {
                TreeNode* node = que.front();
                que.pop();
                vec.push_back(node->val);
                if (node->left) que.push(node->left);
                if (node->right) que.push(node->right);
            }
            result.push_back(vec);
        }
        return result;
    }
};
# 递归法
class Solution {
public:
    void order(TreeNode* cur, vector<vector<int>>& result, int depth)
    {
        if (cur == nullptr) return;
        if (result.size() == depth) result.push_back(vector<int>());
        result[depth].push_back(cur->val);
        order(cur->left, result, depth + 1);
        order(cur->right, result, depth + 1);
    }
    vector<vector<int>> levelOrder(TreeNode* root) {
        vector<vector<int>> result;
        int depth = 0;
        order(root, result, depth);
        return result;
    }
};

LeetCode107 二叉树的层序遍历Ⅱ

题目链接:二叉树的层序遍历Ⅱ

文章链接:二叉树的层序遍历Ⅱ

思路

将二叉树的层序遍历的结果翻转就可以了。

代码
class Solution {
public:
    vector<vector<int>> levelOrderBottom(TreeNode* root) {
        queue<TreeNode*> que;
        vector<vector<int>> res;
        if(root != nullptr)
            que.push(root);
        while(!que.empty())
        {
            int size = que.size();
            vector<int> vec;
            while(size--)
            {
                TreeNode* node = que.front();
                que.pop();
                vec.push_back(node->val);
                if(node->left)
                    que.push(node->left);
                if(node->right)
                    que.push(node->right);
            }
            res.push_back(vec);
        }
        reverse(res.begin(), res.end());
        return res;
    }
};

LeetCode199 二叉树的右视图

题目链接:二叉树的右视图

文章链接:二叉树的右视图

思路

层序遍历取每一层的最后一个元素。

代码
class Solution {
public:
    vector<int> rightSideView(TreeNode* root) {
        queue<TreeNode*> que;
        vector<int> res;
        if(root != nullptr)
            que.push(root);
        while(!que.empty())
        {
            int size = que.size();
            for(int i = 0;i < size; i++)
            {
                TreeNode* node = que.front();
                que.pop();
                if(i == (size - 1))
                    res.push_back(node->val);
                if(node->left)
                    que.push(node->left);
                if(node->right)
                    que.push(node->right);
            }
        }
        return res;
    }
};

LeetCode637 二叉树的层平均值

题目链接:二叉树的层平均值

文章链接:二叉树的层平均值

思路

层序遍历,将每层的元素保存到数组中,然后算出该层的平均值求出来,保存到返回值中。

代码
class Solution {
public:
    vector<double> averageOfLevels(TreeNode* root) {
        queue<TreeNode*> que;
        vector<double> res;
        if(root!= nullptr)
            que.push(root);
        while(!que.empty())
        {
            int size = que.size();
            double sum = 0;
            double avg = 0;
            vector<int> vec;
            while(size--)
            {
                TreeNode* node = que.front();
                que.pop();
                vec.push_back(node->val);
                if(node->left)
                    que.push(node->left);
                if(node->right)
                    que.push(node->right);
            }
            for(int i = 0;i < vec.size();i++)
            {
                sum += vec[i];
            }
            avg = (sum / vec.size());
            res.push_back(avg);
        }
        return res;
    }
};

LeetCode429 N叉树的层序遍历

题目链接:N叉树的层序遍历

文章链接:N叉树的层序遍历

思路

N叉树与二叉树的区别在于结点的孩子个数不同,N叉树的结点孩子有N个,所以入队的时候,要将其所有孩子都要入队,而不是左右孩子。

代码
class Solution {
public:
    vector<vector<int>> levelOrder(Node* root) {
        queue<Node*> que;
        if (root != NULL) que.push(root);
        vector<vector<int>> result;
        while (!que.empty()) {
            int size = que.size();
            vector<int> vec;
            for (int i = 0; i < size; i++) {
                Node* node = que.front();
                que.pop();
                vec.push_back(node->val);
                for (int i = 0; i < node->children.size(); i++) { // 将节点孩子加入队列
                    if (node->children[i]) que.push(node->children[i]);
                }
            }
            result.push_back(vec);
        }
        return result;

    }
};

LeetCode515 在每个树行中找最大值

题目链接:在每个树行中找最大值

文章链接:在每个树行中找最大值

思路

层序遍历二叉树,找到每一层的最大值。

代码
class Solution {
public:
    vector<int> largestValues(TreeNode* root) {
        queue<TreeNode*> que;
        if (root != NULL) que.push(root);
        vector<int> result;
        while (!que.empty()) {
            int size = que.size();
            int maxValue = INT_MIN; // 取每一层的最大值
            for (int i = 0; i < size; i++) {
                TreeNode* node = que.front();
                que.pop();
                maxValue = node->val > maxValue ? node->val : maxValue;
                if (node->left) que.push(node->left);
                if (node->right) que.push(node->right);
            }
            result.push_back(maxValue); // 把最大值放进数组
        }
        return result;
    }
};

LeetCode116 填充每个节点的下一个右侧节点指针

题目链接:填充每个节点的下一个右侧节点指针

文章链接:填充每个节点的下一个右侧节点指针

思路

本题依然是层序遍历,只不过在单层遍历的时候记录一下本层的头部节点,然后在遍历的时候让前一个节点指向本节点就可以了。

代码
class Solution {
public:
    Node* connect(Node* root) {
        queue<Node*> que;
        if (root != NULL) que.push(root);
        while (!que.empty()) {
            int size = que.size();
            // vector<int> vec;
            Node* nodePre;
            Node* node;
            for (int i = 0; i < size; i++) {
                if (i == 0) {
                    nodePre = que.front(); // 取出一层的头结点
                    que.pop();
                    node = nodePre;
                } else {
                    node = que.front();
                    que.pop();
                    nodePre->next = node; // 本层前一个节点next指向本节点
                    nodePre = nodePre->next;
                }
                if (node->left) que.push(node->left);
                if (node->right) que.push(node->right);
            }
            nodePre->next = NULL; // 本层最后一个节点指向NULL
        }
        return root;

    }
};

LeetCode117 填充每个节点的下一个右侧节点指针II

题目链接:填充每个节点的下一个右侧节点指针Ⅱ

文章链接:填充每个节点的下一个右侧节点指针Ⅱ

思路

这道题和上一题没有本质的区别,只不过上一题是满二叉树,这一题是个普通二叉树。

代码
class Solution {
public:
    Node* connect(Node* root) {
        queue<Node*> que;
        if (root != NULL) que.push(root);
        while (!que.empty()) {
            int size = que.size();
            // vector<int> vec;
            Node* nodePre;
            Node* node;
            for (int i = 0; i < size; i++) {
                if (i == 0) {
                    nodePre = que.front(); // 取出一层的头结点
                    que.pop();
                    node = nodePre;
                } else {
                    node = que.front();
                    que.pop();
                    nodePre->next = node; // 本层前一个节点next指向本节点
                    nodePre = nodePre->next;
                }
                if (node->left) que.push(node->left);
                if (node->right) que.push(node->right);
            }
            nodePre->next = NULL; // 本层最后一个节点指向NULL
        }
        return root;

    }
};

LeetCode104 二叉树的最大深度

题目链接:二叉树的最大深度

文章链接:二叉树的最大深度

思路

使用层序遍历是最为合适的,因为最大的深度就是二叉树的层数。

代码
class Solution {
public:
    int maxDepth(TreeNode* root) {
        queue<TreeNode*> que;
        int depth = 0;
        if(root != nullptr)
            que.push(root);
        while(!que.empty())
        {
            int size = que.size();
            while(size--)
            {
                TreeNode* node = que.front();
                que.pop();
                if(node->left)
                    que.push(node->left);
                if(node->right)
                    que.push(node->right);
            }
            depth++;
        }
        return depth;
    }
};

LeetCode111 二叉树的最小深度

题目链接:二叉树的最小深度

文章链接:二叉树的最小深度

思路

本题也可以用层序遍历,不过要注意的是,只有当节点的左右孩子都为空时,才说明是遍历的最低点了。

代码
class Solution {
public:
    int minDepth(TreeNode* root) {
        if (root == NULL) return 0;
        int depth = 0;
        queue<TreeNode*> que;
        que.push(root);
        while(!que.empty()) {
            int size = que.size();
            depth++; // 记录最小深度
            for (int i = 0; i < size; i++) {
                TreeNode* node = que.front();
                que.pop();
                if (node->left) que.push(node->left);
                if (node->right) que.push(node->right);
                if (!node->left && !node->right) { // 当左右孩子都为空的时候,说明是最低点的一层了,退出
                    return depth;
                }
            }
        }
        return depth;
    }
};

LeetCode226 翻转二叉树

题目链接:翻转二叉树

文章链接:翻转二叉树

视频链接:翻转二叉树

思路

递归交换节点就行。

代码

class Solution {
public:
    TreeNode* invertTree(TreeNode* root) {
        if (root == NULL) return root;
        swap(root->left, root->right);  // 中
        invertTree(root->left);         // 左
        invertTree(root->right);        // 右
        return root;
    }
};

LeetCode101 对称二叉树

题目链接:对称二叉树

文章链接:对称二叉树

视频链接:对称二叉树

思路

对于二叉树是否对称,要比较的是根节点的左子树与右子树是不是相互翻转的,理解这一点就知道了其实我们要比较的是两个树(这两个树是根节点的左右子树),所以在递归遍历的过程中,也是要同时遍历两棵树。而在比较过程中比较的是两个子树的里侧和外侧的元素是否相等。

代码

class Solution {
public:
    bool compare(TreeNode* left, TreeNode* right) {
        // 首先排除空节点的情况
        if (left == NULL && right != NULL) return false;
        else if (left != NULL && right == NULL) return false;
        else if (left == NULL && right == NULL) return true;
        // 排除了空节点,再排除数值不相同的情况
        else if (left->val != right->val) return false;

        // 此时就是:左右节点都不为空,且数值相同的情况
        // 此时才做递归,做下一层的判断
        bool outside = compare(left->left, right->right);   // 左子树:左、 右子树:右
        bool inside = compare(left->right, right->left);    // 左子树:右、 右子树:左
        bool isSame = outside && inside;                    // 左子树:中、 右子树:中 (逻辑处理)
        return isSame;

    }
    bool isSymmetric(TreeNode* root) {
        if (root == NULL) return true;
        return compare(root->left, root->right);
    }
};
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员劝退师_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值