力扣-62不同路径(dp)

该问题是一个动态规划问题,机器人在mxn网格中从左上角移动到右下角,每次只能向下或向右移动。通过定义dp数组,初始化第一行和第一列的值为1,然后使用状态转移方程dp[i][j]=dp[i-1][j]+dp[i][j-1]计算中间格子的路径总数,最终返回dp[m-1][n-1]作为答案。
摘要由CSDN通过智能技术生成

力扣-62不同路径

1、题目

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

示例 :

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ErT8fm0s-1677486690651)(img/robot_maze.png)]

输入:m = 3, n = 7
输出:28

2、分析

  1. 首先看题目要求的是什么:总共有多少不同的路径。可看出是一道求和问题
  2. 其次分析,如果在其中一个格子,怎么算路径到这个格子的总数。根据题意,机器人每次只能向下或者向右进行增加,是一个关于包含前面路径(即子路径)的求和累加过程,典型的动态规划问题
  3. 由图可知,这是一个二维数组,所以我们需要界定dp【i】【j】值表示的含义,很明显,即到这个格子的总共不同路径的个数。
  4. 然后我们模拟过程,需要怎样的状态转移方程
  5. 界定初始值
  6. 最后书写出我们的代码

3、代码及注释

class Solution {
    public int uniquePaths(int m, int n) {
        // 1.dp[i][j] 表示到第i行j列时路径的总数
        int[][] dp = new int[m][n];
        // 2.初始化第一行和第一列,因为在模拟过程,发现第一行和第一列格子只有一种走法
        for (int i = 0; i < n; i++){
            dp[0][i] = 1;
        }
        for (int j = 0; j < m; j++){
            dp[j][0] = 1;
        }
        // 3.使用状态转移方程,中间的格子,只能由上面和左边过来
        for (int i = 1; i < m; i++){
            for (int j = 1; j < n; j++){
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
            }
        }
        // 4.返回我们最后到的格子所不同路径总合
        return dp[m - 1][n - 1];
    }
}

4、练习

力扣题目连接:https://leetcode.cn/problems/unique-paths/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值