蓝桥杯路径之谜题解,一题弄懂暴力搜索dfs
众所周知,暴力搜索dfs在蓝桥杯中占比颇多,以本题为例,彻底搞懂dfs思想。
首先,此类题型中的情形大都是在一个图中进行上下左右四个方向的移动,那么我们就可以想到使用dfs进行搜索。
第一步,定义一个dx和dy,分别代表下一步我们往哪里走。
int dx[]={0,0,1,-1};
int dy[]={1,-1,0,0};
第二步,确定递归结束的条件。
首先我们读入题目所给的已知的北边的箭靶和西边的箭靶上的数字保存在int nor_tru[N],eas_tru[N]数组中。
然后我们用两个结果数组nor[N],eas[N]分别保存在骑士行进过程中北边的箭靶和西边的箭靶上的数字。
int nor[N],eas[N];
int nor_tru[N],eas_tru[N];
接下来我们就能确定递归结束的条件了,结束的条件就是骑士走到右下角。此时射出的箭如果满足题目中所给的数据,那么就输出结果,否则进行回溯。
if(flag) return ;
if(x==n && y==n)
{
if(check())
{
for(int i=0;i<res.size();i++) cout<<res[i]<<" ";
flag=true;
}
return ;
}
所以我们在每次进行dfs递归的时候一开始就要判断是否满足递归结束条件,如果一旦满足,我们就要输出路径。
搞明白了递归结束条件,那么我们就可以开始写最最重要的dfs环节了。
按我们上面所说的,从0-3进行for循环代表我们走了上下左右四个方向。每个方向得到一个新的tx,ty值,判断一下如果新的tx,ty值超过边界则直接进行下一次循环。否则如果这个格子没有走过的话,我们就走到这个格子,这里再判断一下如果此时这个格子对应的北边的箭靶和西边的箭靶的数目超过了题目所给的数字的话,我们也直接进行下一次循环(说明这个格子不能走),如果没有的话我们就走到这个格子,然后将vis数组值赋为1。然后射箭,让nor[N],eas[N]分别+1,将这个格子记录到我们的路径数组中去。然后以这个格子为起点继续进行dfs递归。
写完这些后,结束了吗?当然没有,我们之前所做的都是递归,递归到头后还会进行回溯,我们还要写回溯之后进行的处理。记住!回溯就是递归的逆过程,回溯要做的操作就是递归时做的操作的逆过程。所以我们将vis数组赋为0,箭收回来,nor[N],eas[N]分别-1,然后将这个格子从路径数组中pop出去,以我的理解,就相当于清空了之前递归所造成的影响,干干净净地准备下一次递归。
void dfs(int x,int y)
{
if(flag) return ;
if(x==n && y==n)
{
if(check())
{
for(int i=0;i<res.size();i++) cout<<res[i]<<" ";
flag=true;
}
return ;
}
for(int i=0;i<4;i++)
{
int tx=x+dx[i];
int ty=y+dy[i];
if(tx<=0 ||ty<= 0|| tx> n || ty> n) continue;
if(!vis[tx][ty])
{
if(nor[tx]>nor_tru[tx] || eas[ty]>eas_tru[ty]) continue;
vis[tx][ty]=1;
nor[ty]++,eas[tx]++;
res.push_back(path[tx][ty]);
dfs(tx,ty);
vis[tx][ty]=0;
nor[ty]--,eas[tx]--;
res.pop_back();
}
}
}
完整代码如下:
#include<bits/stdc++.h>
using namespace std;
const int N=25;
int path[N][N];
int vis[N][N];
int nor[N],eas[N];
int nor_tru[N],eas_tru[N];
vector<int> res;
bool flag=false;
int n;
int dx[]={0,0,1,-1};
int dy[]={1,-1,0,0};
bool check()
{
for(int i=1;i<=n;i++)
{
if(nor_tru[i] != nor[i] || eas[i]!= eas_tru[i]) return false;
}
return true;
}
void dfs(int x,int y)
{
if(flag) return ;
if(x==n && y==n)
{
if(check())
{
for(int i=0;i<res.size();i++) cout<<res[i]<<" ";
flag=true;
}
return ;
}
for(int i=0;i<4;i++)
{
int tx=x+dx[i];
int ty=y+dy[i];
if(tx<=0 ||ty<= 0|| tx> n || ty> n) continue;
if(!vis[tx][ty])
{
if(nor[tx]>nor_tru[tx] || eas[ty]>eas_tru[ty]) continue;
vis[tx][ty]=1;
nor[ty]++,eas[tx]++;
res.push_back(path[tx][ty]);
dfs(tx,ty);
vis[tx][ty]=0;
nor[ty]--,eas[tx]--;
res.pop_back();
}
}
}
int main()
{
cin>>n;
for(int i=1;i<=n;i++) cin>>nor_tru[i];
for(int i=1;i<=n;i++) cin>>eas_tru[i];
int k=0;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++)
{
path[i][j]=k;
k++;
}
}
vis[1][1]=1;
nor[1]=1;
eas[1]=1;
res.push_back(0);
dfs(1,1);
return 0;
}