leetcode118. 杨辉三角,老题又做

leetcode118. 杨辉三角

给定一个非负整数 numRows,生成「杨辉三角」的前 numRows 行。

在「杨辉三角」中,每个数是它左上方和右上方的数的和。
在这里插入图片描述
示例 1:
输入: numRows = 5
输出: [[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1]]

示例 2:
输入: numRows = 1
输出: [[1]]

提示:
1 <= numRows <= 30

蓝桥杯有个类似的题目,我曾写过题解

在这里插入图片描述

题目分析

杨辉三角是一个经典的数学问题,每一行的第一个和最后一个数字都是1,其他位置的数字是它上方和左上方数字之和。这个问题可以通过动态规划的方式来解决。

算法步骤

  1. 初始化结果数组 res 和临时数组 t
  2. 特殊处理第一行,将 1 加入 t,然后将 t 加入 res
  3. 如果 numRows 为1,直接返回 res
  4. 初始化二维数组 nums 用于记录中间结果,大小为 40x40(根据题目需求设定)。
  5. 使用双重循环遍历每一行,计算当前行的数值:
    • 对于每一行的第一个和最后一个数字,直接设置为1。
    • 对于其他位置的数字,计算方式为 nums[i-1][j-1] + nums[i-1][j]
  6. 将计算结果存入 res

算法流程

开始
初始化res和t
numRows是否等于1
返回res
初始化nums
双重循环计算每一行
将计算结果存入res
返回res

具体代码

class Solution {
public:
    vector<vector<int>> generate(int numRows) {
    vector<vector<int>> res;
    vector<int> t;
    t.push_back(1);
    res.push_back(t);
    if(numRows==1) return res;
    int nums[40][40]={0};
    nums[1][1]=1;
    for(int i=2;i<=numRows;i++)
    {
        vector<int> temp;
        temp.push_back(1);
        nums[i][1]=1;
        for(int j=2;j<=i-1;j++)  //i=4 
        {
            int sum=nums[i-1][j-1]+nums[i-1][j];
            temp.push_back(sum);
            nums[i][j]=sum;
        }
        temp.push_back(1);
        nums[i][i]=1;
        res.push_back(temp);
    }
    return res;
    }
};

算法分析

  • 时间复杂度: O(numRows^2),因为需要计算每一行的数值。
  • 空间复杂度: O(numRows^2),因为需要存储每一行的数值。
  • 易错点: 在计算每一行的数值时,需要注意边界条件,即每一行的第一个和最后一个数字都是1。

相似题目

题目链接
118. 杨辉三角https://leetcode.cn/problems/pascals-triangle/
119. 杨辉三角 IIhttps://leetcode.cn/problems/pascals-triangle-ii/
剑指 Offer 47. 礼物的最大价值https://leetcode.cn/problems/li-wu-de-zui-da-jie-zhi-lcof/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cider瞳

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值