Attention:
思路:
最早开始时间,满足左边均可完成的情况下,从左向右推
最晚开始时间,满足右边均可完成的情况下,从右向左推
计算所有项目的两个时间都在要求内,则可输出两行
写这题时最后想到,如果两边推后,某项目的最早开始时间晚于最晚开始时间,并且都在要求内,那这样不是不对吗?
之后意识到,最左时间是满足要求的最小限制,最右时间是满足要求的最大限制,如果出现上述情况,那么其最左时间会在最后计算时得出不满足要求,因为直接超过了最大限制。
done.
#include<bits/stdc++.h>
#include<iostream>
using namespace std;
int n, m, pre[105], day[105];
int sign = 0, early[105], late[105];
void fill_late(int i, int j){
if(i == 0)return;
if(j != 0)late[i] = j;
if(late[i] < late[pre[i]] + day[pre[i]])fill_late(pre[i], late[i] - day[pre[i]]);
return;
}
int main(){
cin >> n >> m;
for(int i = 1; i <= m; ++i)
cin >> pre[i];
for(int i = 1; i <= m; ++i){
cin >> day[i];
late[i] = n - day[i] + 1;
if(pre[i] == 0){
early[i] = 1;
}
}
for(int i = 1; i <= m; ++i){
if(pre[i] != 0){
early[i] = early[pre[i]] + day[pre[i]];
fill_late(i, 0);
if(early[i] + day[i] - 1 > n || late[i] + day[i] - 1 > n)sign = 1;
}
}
for(int i = 1; i <= m; ++i){
cout << early[i] << " ";
}
if(sign == 0){
printf("\n");
for(int i = 1; i <= m; ++i)
cout << late[i] << " ";
}
return 0;
}