文章目录
题426.csp-2212 P1现值计算&P2训练计划&P3JPEG 解码&P4聚集方差
一、P1现值计算
1.题目:
2.题解:
本题套第k年当前实际价值公式x=x*(1+i)-k做计算,注意数的数据类型即可。
代码如下:
#include <bits/stdc++.h>
using namespace std;
int n;
double i;
int main()
{
cin>>n>>i;
double res=0;
for(int k=0;k<=n;k++)
{
double x;cin>>x;
res+=x*pow((1+i),-k);
}
printf("%.3lf",res);
}
二、P2训练计划
1.题目:
2.题解:
根据题意易知本题考查拓扑排序和关键路径问题,其中拓扑排序套板子即可,关键路径问题在此分析如下:
代码如下:
#include <bits/stdc++.h>
using namespace std;
const int maxm=110;
const int Inf=366;
int n,m;
vector<int> G[maxm];
int indeg[maxm];
int t[maxm],tb[maxm];
int flag=1;//表示是否能在n天内完成m项科目
void bfs()//拓扑排序求科目最早开始时间
{
queue<int> q;
for(int i=1; i<=m; i++)
{
if(indeg[i]==0)//先将入度等于0的科目入队
{
q.push(i);
tb[i]=1;
if(tb[i]+t[i]-1>n) flag=0;//出现科目最早完成时间超过了第n天,则flag置为0
}
}
while(!q.empty())
{
int tt=q.front();
q.pop();
for(auto j:G[tt])//遍历当前科目的邻接科目
{
q.push(j);//由于这里每个科目只有一个依赖科目,所以遍历到它时可直接将其入队
tb[j]=tb[tt]+t[tt];//j科目最早开始时间为当前任务最早开始时间+完成当前任务所需的时间
if(tb[j]+t[j]-1>n) flag=0;//出现科目最早完成时间超过了第n天,则flag置为0
}
}
}
int dfs(int u)//dfs求关键路径问题计算科目最晚开始时间
{
if(tb[u]) return tb[u];
if(G[u].size()==0)
{
return tb[u]=n+1-t[u];
}
else
{
int val=Inf;
for(auto v:G[u]) val=min(val,dfs(v));
return tb[u]=val-t[u];
}
}
int main()
{
cin.tie(0),cout.tie(0);
cin>>n>>m;
for(int i=1; i<=m; i++)
{
int j;
cin>>j;
if(j)//j!=0才表示i科目有依赖
{
G[j].push_back(i);//i科目依赖于j,则建一条从j到i的有向边
indeg[i]++;//统计入度
}
}
for(int i=1; i<=m; i++) cin>>t[i];
bfs();//拓扑排序求科目最早开始时间
for(int i=1; i<=m; i++) cout<<tb[i]<<" ";
if(flag)//n天内完得成m个科目
{
putchar('\n');
memset(tb,0,sizeof tb);//初始化tb,求最晚开始时间
for(int i=1; i<=m; i++)
{
if(indeg[i]==0) dfs(i);//也是从入度为0的科目出发
}
for(int i=1; i<=m; i++) cout<<tb[i]<<" ";
}
}
三、P3JPEG 解码
1.题目:
2.题解:
这题就读懂题意之后直接按步骤模拟即可,连优化都不用
代码如下:
#include <bits/stdc++.h>
using namespace std;
int Q[8][8];
int M[8][8],MQ[8][8],MM[8][8];
int n,T;
void print(int A[][8])
{
for(int i=0;i<8;i++)
{
for(int j=0;j<8;j++)
{
if(j>0) putchar(' ');
cout<<A[i][j];
}
putchar('\n');
}
}
void makeM()//z字形扫描填充M
{
//上三角
int i=0,j=0,t=0;
int dir=-1;
while(1)
{
int q;cin>>q;
M[i][j]=q;
t++;
if(t>=n) return;
if(dir==-1&&(i-1<0||j+1>7))
{
dir=1;
if(j+1>7) break;
j++;
cin>>q;
M[i][j]=q;
t++;
if(t>=n) return;
}
else if(dir==1&&(i+1>7||j-1<0))
{
dir=-1;
if(i+1>7) break;
i++;
cin>>q;
M[i][j]=q;
t++;
if(t>=n) return;
}
if(dir==-1) i--,j++;
else i++,j--;
}
//下三角
j++;
dir=1;
while(1)
{
int q;cin>>q;
M[i][j]=q;
t++;
if(t>=n) return;
if(dir==1&&(i-1<0||j+1>7))
{
dir=-1;
if(i+1>7) break;
i++;
cin>>q;
M[i][j]=q;
t++;
if(t>=n) return;
}
else if(dir==-1&&(i+1>7||j-1<0))
{
dir=1;
if(j+1>7) break;
j++;
cin>>q;
M[i][j]=q;
t++;
if(t>=n) return;
}
if(dir==1) i--,j++;
else i++,j--;
}
}
void makeMQ()//量化矩阵变换
{
for(int i=0;i<8;i++)
{
for(int j=0;j<8;j++)
{
MQ[i][j]=M[i][j]*Q[i][j];
}
}
}
void makeMM()//离散余弦变化与最终处理
{
for(int i=0;i<8;i++)
{
for(int j=0;j<8;j++)
{
double val=0;
for(int u=0;u<8;u++)
{
for(int v=0;v<8;v++)
{
double tmp;
if(u==0&&v==0) tmp=0.5;
else if(u==0&&v>0) tmp=sqrt(0.5);
else if(u>0&&v==0) tmp=sqrt(0.5);
else if(u>0&&v>0) tmp=1;
val+=tmp*MQ[u][v]*cos(acos(-1)/8.0*(i+0.5)*u)*cos(acos(-1)/8.0*(j+0.5)*v);
}
}
val=0.25*val;
val+=128;
MM[i][j]=round(val);
if(MM[i][j]>255) MM[i][j]=255;//别忘了考虑这个越界问题
else if(MM[i][j]<0) MM[i][j]=0;
}
}
}
int main()
{
cin.tie(0),cout.tie(0);
for(int i=0;i<8;i++)
{
for(int j=0;j<8;j++) cin>>Q[i][j];
}
cin>>n>>T;
makeM();
if(T==0)
{
print(M);
return 0;
}
makeMQ();
if(T==1)
{
print(MQ);
return 0;
}
makeMM();
print(MM);
}
/*
16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99
64
0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
*/
四、P4聚集方差
1.题目:
2.题解:
我只想说这题骗分可骗65分。。。
代码如下:
//直接排序数组
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=300003;
int n;
vector<int> G[maxn];
ll a[maxn];
vector<ll> A[maxn];
void dfs(int u)
{
A[u].push_back(a[u]);
for(auto v:G[u])
{
dfs(v);
for(auto val:A[v]) A[u].push_back(val);
}
sort(A[u].begin(),A[u].end());
//cout<<u<<":"<<endl;
//for(auto val:A[u]) cout<<val<<" ";
//putchar('\n');
}
void solve()
{
for(int i=1;i<=n;i++)
{
ll ans=0;
int len=A[i].size();
if(len==1)
{
ans=0;
printf("%lld\n",ans);
continue;
}
for(int j=0;j<len;j++)
{
ll val;
if(j==0) val=(A[i][j]-A[i][j+1])*(A[i][j]-A[i][j+1]);//然而我用pow就错
else if(j==len-1) val=(A[i][j]-A[i][j-1])*(A[i][j]-A[i][j-1]);
else
{
ll pre=A[i][j]-A[i][j-1],post=A[i][j]-A[i][j+1];
val=min(pre*pre,post*post);
}
//cout<<"val:"<<val<<endl;
ans+=val;
}
printf("%lld\n",ans);
}
}
int main()
{
scanf("%d",&n);
for(int i=2;i<=n;i++)
{
int p;scanf("%d",&p);
G[p].push_back(i);
}
for(int i=1;i<=n;i++) scanf("%lld",&a[i]);
dfs(1);
solve();
}
//合并有序数组
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=3e5+3;
int n;
vector<int> G[maxn];
ll a[maxn];
vector<ll> A[maxn];
vector<ll> merge(vector<ll> &src1,vector<ll> &src2)
{
vector<ll> des;
int i,j;
for(i=0,j=0; i<src1.size()&&j<src2.size();)
{
if(src1[i]<src2[j]) des.push_back(src1[i++]);
else des.push_back(src2[j++]);
}
while(i<src1.size()) des.push_back(src1[i++]);
while(j<src2.size()) des.push_back(src2[j++]);
return des;
}
void dfs(int u)
{
A[u].push_back(a[u]);
for(auto v:G[u])
{
dfs(v);
A[u]=merge(A[u],A[v]);
}
}
void solve()
{
for(int i=1; i<=n; i++)
{
ll ans=0;
int len=A[i].size();
if(len==1)
{
ans=0;
printf("%lld\n",ans);
continue;
}
for(int j=0; j<len; j++)
{
ll val;
if(j==0) val=(A[i][j]-A[i][j+1])*(A[i][j]-A[i][j+1]);//然而我用pow就错
else if(j==len-1) val=(A[i][j]-A[i][j-1])*(A[i][j]-A[i][j-1]);
else
{
ll pre=A[i][j]-A[i][j-1],post=A[i][j]-A[i][j+1];
val=min(pre*pre,post*post);
}
ans+=val;
}
printf("%lld\n",ans);
}
}
int main()
{
scanf("%d",&n);
for(int i=2; i<=n; i++)
{
int p;
scanf("%d",&p);
G[p].push_back(i);
}
for(int i=1; i<=n; i++) scanf("%lld",&a[i]);
dfs(1);
solve();
}