Color Sequence
分析:
-
求满足条件的连续子序列的数量
- 条件:子序列每种颜色出现的数量都是偶数
-
再看颜色种类数 < = 21 <=21 <=21
会想到要去用到 D P DP DP,考虑状态的转移,下面只考虑一种颜色来分析:
f [ i ] [ j ] f[i][j] f[i][j] 表示前j个颜色,第 i i i 种颜色的贡献状态
要求是偶数, f [ i ] [ j ] f[i][j] f[i][j] 的贡献就等于前 j j j 个颜色 c [ i ] c[i] c[i] 出现的次数 / 2 /2 /2(奇数只跟奇数,偶数只跟偶数)
-
多种颜色同时考虑
与单个颜色的区别:状态由单个颜色的情况,转换成多种颜色的共同状态
每种颜色要么偶数个,要么奇数个,与具体数值没有关系
又因为 c i < = 20 c_i<=20 ci<=20 故可以想到用亦或的形式来维护状态(前缀亦或求取状态)
-
最后跑一遍状态前缀和的累加即可
#include <bits/stdc++.h>
#define int long long
using namespace std;
typedef long long ll;
const int N=1e6+5;
int a[N],f[N],s[N<<3];
signed main()
{
ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0);
int n;
cin>>n;
for(int i=1;i<=n;i++) cin>>a[i];
ll pre=0;
for(int i=1;i<=n;i++)
{
pre^=(1<<a[i]); // 前缀亦或求状态
f[i]=pre; // 状态记录
}
int ans=0;
s[0]=1;
for(int i=1;i<=n;i++)
{
ans+=s[f[i]]; // 累加
s[f[i]]++; // 状态前缀和
}
cout<<ans<<endl;
return 0;
}