【Pytorch环境配置—Linux/Windows】: cuda、cuDNN、pytorch、torchvision、torchaudio 详细安装教程(报错解决、安装慢慢慢)

【Pytorch环境配置—Linux/Windows】: cuda、cuDNN、pytorch、torchvision、torchaudio 详细安装教程(报错解决、安装慢慢慢)

0. 相关报错

  1. Error: The NVIDIA driver on your system is too old (found version 11040).
    Please update your GPU driver by downloading and installing a new
    version from the URL: http://www.nvidia.com/Download/index.aspx
    Alternatively, go to: https://pytorch.org to install
    a PyTorch version that has been compiled with your version
    of the CUDA driver.
  2. UserWarning: Failed to load image Python extension: libc10_cuda.so: cannot open shared object file: No such file or directory
    warn(f"Failed to load image Python extension: {e}")
  3. AttributeError: module ‘torch._C’ has no attribute ‘_cuda_setDevice’

这些个问题的原因基本都是 cuda 版本与 torch*不匹配,或者 torch与torchvision 不匹配等,它们的解决办法都一样。

  • 建议重新创建一个环境(当然你也可以卸载所有与torch相关的依赖包,然后在原有环境上修复)
  • 接下来按照下面的思路。

1. 创建新环境并激活

conda create -n test python=3.8
conda activate test (source activate test)

2. 查看机器支持的CUDA版本

  • nvidia-smi
    在这里插入图片描述
    该电脑可以支持最高CUDA版本为11.7,驱动可以向下兼容,所以小于等于11.7的CUDA版本都可以安装

3. 安装 cuda、cuDNN、pytorch、torchvision、torchaudio(两种方式)

3.1 pip 安装 (这个我跑通了,所以推荐这种方法)

可以直接运行这条命令下载PyTorch相应版本:

pip install torch==x.x.x+cu113 torchvision==x.x.x+cu113 torchaudio==x.x.x+cu113 -f \
https://download.pytorch.org/whl/torch_stable.html

因为我的CUDA版本用的11.4,但是下面3.3中没有找到11.4相关的,由于向下兼容,我选择了11.3。所以下载CUDA版本需要加上+cu113,但是有的版本没有区分CPU和CUDA,不需要加+cu113(其他版本类似,如+cu111等),建议先加上,不行再去掉。

  • 对应的 x.x.x 参考 3.3 内容进行选择,选择之后如下
  • 觉得下载的很慢,可以加个 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install torch==1.10.0+cu113 torchvision==0.11.1+cu113 torchaudio==0.10.0+cu113 -f \
https://download.pytorch.org/whl/torch_stable.html -i https://pypi.tuna.tsinghua.edu.cn/simple
  • 如果对于torchaudio没需求,可以把它去掉。

3.2 conda 安装

这个貌似不用加上cu113–默认cuda版本(好像不太确定),使用 conda 安装CUDA Toolkit、PyTorch、torchvision和torchaudio:

conda install torch==x.x.x torchvision==x.x.x torchaudio==x.x.x cudatoolkit=x.x -c python

如果想用国内镜像,conda需要添加通道,推荐使用清华源:

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --set show_channel_urls yes

然后把上边的命令后的-c python删除:

conda install torch==x.x.x torchvision==x.x.x torchaudio==x.x.x cudatoolkit=x.x

而对应的 x.x.x 参考 下面 3.3 内容 进行选择。

3.3 版本匹配选择

  • CUDA与cuDNN对应版本,参考来源:cuDNN Archive
    在这里插入图片描述
  • cuda、cudatoolkit 与 torch
    在这里插入图片描述
  • PyTorch与torchvision、Python对应版本,参考来源:Pytorch
    在这里插入图片描述
  • PyTorch与torchaudio、Python对应版本,参考来源:github
    在这里插入图片描述

参考

【1】https://blog.csdn.net/qq_42026580/article/details/126538010

### 安装和配置 CUDAcuDNNPyTorch 的方法 #### 1. 确定硬件与驱动版本 在开始安装之前,需确认 GPU 驱动已正确安装并支持目标 CUDA 版本。可以通过以下命令检查当前显卡及其驱动版本: ```bash nvidia-smi ``` 如果未安装 NVIDIA 显卡驱动程序,则需要先完成其安装[^1]。 --- #### 2. 下载并安装 CUDA 工具包 访问官方 NVIDIA CUDA Toolkit 页面下载适合的版本。对于 Ubuntu 20.04,推荐通过 `.deb` 文件或 `runfile` 方式安装。以下是基于 APT 软件源的方式: 更新软件源列表: ```bash sudo apt update ``` 添加 NVIDIA 的 GPG 密钥及软件仓库地址: ```bash wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-keyring_1.0-1_all.deb sudo dpkg -i cuda-keyring_1.0-1_all.deb sudo apt-get update ``` 安装指定版本的 CUDA(例如 CUDA 11.8): ```bash sudo apt-get install -y cuda-11-8 ``` 设置环境变量以便于后续调用 CUDA 库文件: 编辑 `~/.bashrc` 或 `/etc/profile.d/` 中的脚本文件,追加如下内容: ```bash export PATH=/usr/local/cuda-11.8/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda-11.8/lib64:${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}} ``` 使更改生效: ```bash source ~/.bashrc ``` 验证安装成功与否: ```bash nvcc --version ``` --- #### 3. 安装 cuDNN cuDNN 是深度学习框架的重要依赖库之一。可以从 NVIDIA 开发者网站获取对应 CUDA 版本的 cuDNN 压缩包。解压后复制到相应目录即可完成集成操作。 假设已经获得 cuDNN v8.x 对应 CUDA 11.8 的 tar.gz 归档文件: ```bash tar -xzvf cudnn-linux-x86_64-*.*.*-cuda*.tgz sudo cp cuda/include/* /usr/local/cuda/include/ sudo cp cuda/lib64/* /usr/local/cuda/lib64/ sudo ldconfig ``` 再次校验是否正常加载 cuDNN 动态链接库: ```bash ls /usr/local/cuda/lib64 | grep libcudnn.so ``` --- #### 4. 使用 Conda 创建虚拟环境并安装 PyTorch 创建一个新的 Anaconda 虚拟环境用于隔离开发需求: ```bash conda create -n torch_env python=3.9 conda activate torch_env ``` 按照引用中的具体指令来安装兼容版本的 PyTorch 及其他组件: ```bash conda install pytorch==2.0.0 torchvision==0.15.0 torchaudio==2.0.0 pytorch-cuda=11.8 -c pytorch -c nvidia ``` 测试安装效果以确保一切运行无误: ```python import torch print(torch.cuda.is_available()) # 输出 True 表明可用 print(torch.version.cuda) # 打印对应的 CUDA 版本号 ``` --- ### 注意事项 - 如果遇到任何错误提示,请仔细阅读报错信息并与实际安装路径对比调整。 - 不同版本间的匹配关系非常重要;建议始终查阅最新文档资料作为指导依据[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

秋冬无暖阳°

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值