[leetocde]198. 打家劫舍

这篇博客探讨了一种经典的动态规划问题——小偷盗窃路径优化。文章通过分析不同数量房屋的情况,构建了状态转移方程`dp[i]=Math.max(dp[i-1],dp[i-2]+nums[i])`。提供了两种解决方案,一种是使用动态规划数组,另一种是优化空间复杂度到O(1)。通过维护两个变量`first`和`second`动态更新最大金额。
摘要由CSDN通过智能技术生成

        你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。

        给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。

 样例1:

输入:[1,2,3,1]
输出:4
解释:偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。

           偷窃到的最高金额 = 1 + 3 = 4 。

思路:

1.确定题目类型

看到这种有很多种可能的题,首先想到的是dp,然后去构造状态转移方程。

2.分析数组中数据之间的关系

 由简至难,我们先从数据小的情况下考虑。

1.当n=1时,那么金额最高就是这一家。

2.当n=2时,金额最高的情况就是两家中的较大者。

3.当n>2时,这时就要分情况,如果偷第n家,那么就是前n-2家的最大金额+第n家的金额;如果不偷第n家,那么就是前n-1家的最大金额。

3.构建状态转移方程

我们设dp[i]为偷到第i间房时的最大金额,那么根据我们上面推出的关系

dp[i] = Math.max(dp[i-1],dp[i-2]+nums[i])   (1 <= i <= n-1)

 4.方法一

    public int rob(int[] nums) {
            //判断极端条件
            if (nums == null || nums.length == 0) {
                return 0;
            } else if (nums.length == 1) {
                return nums[0];
            }
            int n = nums.length;
            int[] dp = new int[n];
            dp[0] = nums[0];
            dp[1] = Math.max(nums[0], nums[1]);
            for (int i = 2; i < n; i++) {
                dp[i] = Math.max(dp[i - 1], dp[i - 2] + nums[i]);
            }
            return dp[n - 1];
        }

写法比较中规中矩,先判断出边界值,然后根据状态转移方程更新dp数组

时间复杂度O(n)

空间复杂度O(n)

5.方法二

    public int rob(int[] nums) {
            //判断极端条件
            if (nums == null || nums.length == 0) {
                return 0;
            } else if (nums.length == 1) {
                return nums[0];
            }
            int n = nums.length;
            int first = nums[0], second = Math.max(nums[0], nums[1]);
            for (int i = 2; i < n; i++) {
                int temp = second;
                second = Math.max(first + nums[i], second);
                first = temp;
            }
            return second;
        }

 这里把dp数组去掉,因为通过观察转移方程,我们求当前值时,只需要知道前两个值就可以,所以我们可以动态维护两个值first、second,其他的思路和上面一样

优化后空间复杂度O(1)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值