你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。
给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。
样例1:
输入:[1,2,3,1]
输出:4
解释:偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。偷窃到的最高金额 = 1 + 3 = 4 。
思路:
1.确定题目类型
看到这种有很多种可能的题,首先想到的是dp,然后去构造状态转移方程。
2.分析数组中数据之间的关系
由简至难,我们先从数据小的情况下考虑。
1.当n=1时,那么金额最高就是这一家。
2.当n=2时,金额最高的情况就是两家中的较大者。
3.当n>2时,这时就要分情况,如果偷第n家,那么就是前n-2家的最大金额+第n家的金额;如果不偷第n家,那么就是前n-1家的最大金额。
3.构建状态转移方程
我们设dp[i]为偷到第i间房时的最大金额,那么根据我们上面推出的关系
dp[i] = Math.max(dp[i-1],dp[i-2]+nums[i]) (1 <= i <= n-1)
4.方法一
public int rob(int[] nums) {
//判断极端条件
if (nums == null || nums.length == 0) {
return 0;
} else if (nums.length == 1) {
return nums[0];
}
int n = nums.length;
int[] dp = new int[n];
dp[0] = nums[0];
dp[1] = Math.max(nums[0], nums[1]);
for (int i = 2; i < n; i++) {
dp[i] = Math.max(dp[i - 1], dp[i - 2] + nums[i]);
}
return dp[n - 1];
}
写法比较中规中矩,先判断出边界值,然后根据状态转移方程更新dp数组
时间复杂度O(n)
空间复杂度O(n)
5.方法二
public int rob(int[] nums) {
//判断极端条件
if (nums == null || nums.length == 0) {
return 0;
} else if (nums.length == 1) {
return nums[0];
}
int n = nums.length;
int first = nums[0], second = Math.max(nums[0], nums[1]);
for (int i = 2; i < n; i++) {
int temp = second;
second = Math.max(first + nums[i], second);
first = temp;
}
return second;
}
这里把dp数组去掉,因为通过观察转移方程,我们求当前值时,只需要知道前两个值就可以,所以我们可以动态维护两个值first、second,其他的思路和上面一样
优化后空间复杂度O(1)