深度学习:(三)向量化在梯度下降中的应用

向量化

对于向量之间的点乘,最开始会想到用 for 循环遍历,但是 for 循环速度很慢。可以在 python 中可以使用向量化(批量化处理)代码来实现快速的计算:

原理为:第三方库 numpy 能充分利用并行化来加快计算,并行化指令(SIMD指令)在 CPU 和 GPU 上都是允许的。

import numpy as np
c = np.dot(a,b) # 向量点乘
  • 关于 numpy 中 dot 函数的使用,可参考CSDN上的博客:

    https://blog.csdn.net/g310773517/article/details/139266771
    

    关于 numpy 中其他内置函数的使用,可参考CSDN上的博客:

    https://blog.csdn.net/nihaoxiaocui/article/details/51992860
    

示例:

import numpy as np
import time

a = np.random.rand(1000000) 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值