(一) SummaryWriter
这里先讲解 SummaryWriter ,TensorBoard 会在第二大点进行说明。
SummaryWriter 是 PyTorch 中的一个非常实用的工具,它主要用于将深度学习模型训练过程中的各种日志和统计数据记录下来,并可以与 TensorBoard 配合使用,实现数据的可视化。以下是对 SummaryWriter 库的详细介绍:
1)概述
SummaryWriter 是 torch.utils.tensorboard
包中的一个类,它允许用户将训练过程中的关键信息(如损失值、准确率、学习率、模型权重分布、图像等)写入到指定的事件文件中。这些信息随后可以被 TensorBoard 解析和展示,从而帮助开发者更好地理解和监控模型的训练过程。
2)代码使用步骤
- 安装 TensorBoard:在使用 SummaryWriter 之前,需要确保已经安装了 TensorBoard 。可以使用 pip 命令进行安装:
pip install tensorboard
。 - 导入 SummaryWriter:在代码中导入 SummaryWriter 类:
from torch.utils.tensorboard import SummaryWriter
。 - 实例化 SummaryWriter:创建一个 SummaryWriter 对象,并指定一个日志目录(
log_dir
),用于保存事件文件。- 例如:
writer = SummaryWriter('runs/my_experiment')
,或者writer = SummaryWriter('logs')
。 - 如果没有指定日志目录,那么当开始记录数据时,会自动在当前代码的目录下创建一个名为
runs
的文件夹,同时在此文件夹下创建一个以当前时间、日期和主机名命名的子目录,用于保存时间文件,类似于./runs/YYYYMMDD_HHMMSS_hostname/
这样的路径。
- 例如:
- 记录数据(第三小点会详细介绍):在训练过程中,使用 SummaryWriter 对象的各种方法记录需要的数据。例如,使用
add_scalar
记录损失值,使用add_histogram
记录权重分布等。 - 关闭 SummaryWriter:在训练结束后,调用
writer.close()
方法关闭 SummaryWriter 对象,确保所有数据都被正确写入事件文件。 - 启动 TensorBoard(见下方第二大点):在命令行中使用
tensorboard --logdir=事件文件所在的文件夹名
命令启动 TensorBoard服务。然后,在浏览器中访问http://localhost:6006
,就可以看到 TensorBoard 的可视化界面了。
3)记录不同数据的代码
-
记录标量信息:使用
add_scalar
方法,可以记录如 损失值、准确率 等标量信息。这些信息通常以曲线图的形式在 TensorBoard 中展示,便于观察其变化趋势。writer = SummaryWriter('logs') writer.add_scalar('曲线图标题',scalar_value,global_step) # scalar_value 表示曲线图纵坐标数值 # global_step 表示曲线图横坐标数值
-
记录张量信息:通过
add_histogram
等方法,可以记录 模型权重、梯度 等张量信息。TensorBoard 会以直方图的形式展示这些张量的分布,有助于分析模型的稳定性和收敛性。 -
记录图像信息(注意图像格式):使用
add_image
方法记录 图像 数据。这对于处理图像任务的模型来说尤其有用,因为可以直观地看到模型对输入图像的预测结果或中间层的特征图。writer = SummaryWriter('logs') writer.add_image("图片标题",image_tensor,global_step,dataformats='HWC') <