试题 算法训练 回文数
资源限制
内存限制:256.0MB C/C++时间限制:1.0s Java时间限制:3.0s Python时间限制:5.0s
问题描述
若一个数(首位不为零)从左向右读与从右向左读都一样,我们就将其称之为回文数。
例如:给定一个10进制数56,将56加65(即把56从右向左读),得到121是一个回文数。
又如:对于10进制数87:
STEP1:87+78 = 165 STEP2:165+561 = 726
STEP3:726+627 = 1353 STEP4:1353+3531 = 4884
在这里的一步是指进行了一次N进制的加法,上例最少用了4步得到回文数4884。
写一个程序,给定一个N(2<=N<=10或N=16)进制数M(其中16进制数字为0-9与A-F),求最少经过几步可以得到回文数。
如果在30步以内(包含30步)不可能得到回文数,则输出“Impossible!”
输入格式
两行,N与M
输出格式
如果能在30步以内得到回文数,输出“STEP=xx”(不含引号),其中xx是步数;否则输出一行”Impossible!”(不含引号)
样例输入
9
87
样例输出
STEP=6
提交代码:
/*
比较坑的地方:在N进制下是否为回文数
*/
#include<iostream>
#include<cstring>
using namespace std;
int a[10000],b[10000],s[10001];
bool huiwen(int s[], int l)
{
int i,k;
k = (l - 1)/2;
for(i = 0; i <= k; i++){
if(s[i] != s[l - i -1])
break;
}
if(i == k+1)
return 1;
else
return 0;
}
void inverse(int s[], int l)
{
int i;
memset(a, 0, sizeof(a));
memset(b, 0, sizeof(b));
for(i = 0; i < l; i++){
a[i] = s[i];
b[l - i -1] = a[i];
}
}
int main()
{
int n,l,i,count = 0;
string m;
cin>>n>>m;
l = m.size();
for(i = 0; i < l; i++){
if(m[i] >= 'A' && m[i] <= 'Z')
a[i] = m[i] - 'A' + 10;
else
a[i] = m[i] - '0';
s[i] = a[i];
b[l - i -1] = a[i];
}
while(!huiwen(s, l) && count <= 30){
count++;
memset(s, 0, sizeof(s));
for(i = 0; i < l; i++){
s[i] += a[i] + b[i];
s[i+1] += s[i]/n;
s[i] = s[i]%n;
}
if(s[l] != 0)
l = l + 1;
inverse(s, l);
}
if(count <= 30)
cout<<"STEP="<<count<<endl;
else
cout<<"Impossible!"<<endl;
return 0;
}