试题 算法训练 回文数

试题 算法训练 回文数

资源限制
内存限制:256.0MB C/C++时间限制:1.0s Java时间限制:3.0s Python时间限制:5.0s
问题描述
  若一个数(首位不为零)从左向右读与从右向左读都一样,我们就将其称之为回文数。
  例如:给定一个10进制数56,将56加65(即把56从右向左读),得到121是一个回文数。

又如:对于10进制数87:
  STEP1:87+78 = 165 STEP2:165+561 = 726
  STEP3:726+627 = 1353 STEP4:1353+3531 = 4884

在这里的一步是指进行了一次N进制的加法,上例最少用了4步得到回文数4884。

写一个程序,给定一个N(2<=N<=10或N=16)进制数M(其中16进制数字为0-9与A-F),求最少经过几步可以得到回文数。
  如果在30步以内(包含30步)不可能得到回文数,则输出“Impossible!”
输入格式
  两行,N与M
输出格式
  如果能在30步以内得到回文数,输出“STEP=xx”(不含引号),其中xx是步数;否则输出一行”Impossible!”(不含引号)
样例输入
9
87
样例输出
STEP=6

提交代码

/*
比较坑的地方:在N进制下是否为回文数 
*/
#include<iostream>
#include<cstring>
using namespace std;
int a[10000],b[10000],s[10001];
 
bool huiwen(int s[], int l)
{
    int i,k;
    k = (l - 1)/2;
    for(i = 0; i <= k; i++){
        if(s[i] != s[l - i -1])
        	break;
    }
    if(i == k+1)
    	return 1;
    else
		return 0;
}
     
void inverse(int s[], int l)
{
	int i;
    memset(a, 0, sizeof(a));
    memset(b, 0, sizeof(b));
    for(i = 0; i < l; i++){
        a[i] = s[i];
        b[l - i -1] = a[i];
        }
    }
 
int main()
{
    int n,l,i,count = 0;
    string m;
    cin>>n>>m;
    l = m.size();
    for(i = 0; i < l; i++){
        if(m[i] >= 'A' && m[i] <= 'Z')
        a[i] = m[i] - 'A' + 10;
        else
        a[i] = m[i] - '0';
        s[i] = a[i];
        b[l - i -1] = a[i];
    }
    while(!huiwen(s, l) && count <= 30){
	    count++;
	    memset(s, 0, sizeof(s));
	    for(i = 0; i < l; i++){
		    s[i] += a[i] + b[i];
		    s[i+1] += s[i]/n;
		    s[i] = s[i]%n;
	    }
	    if(s[l] != 0)
	    	l = l + 1;
	    inverse(s, l);
	}
    if(count <= 30)
    	cout<<"STEP="<<count<<endl;
    else
    cout<<"Impossible!"<<endl;
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

极客李华

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值