机器学习一般流程:
什么是表示学习?
- 通过构建具有一定“深度”的模型,可以让模型来自动学习好的特征表示,从而最终提升预测或识别的准确性。
特征提取与表示学习的区别?
- 特征提取:基于任务或先验对去除无用特征
- 表示学习:通过深度模型学习高层语义特征
什么是深度学习?
- 深度学习=表示学习+决策(预测)学习
离散随机变量
伯努利分布
二项分布
连续随机变量
高斯分布
累积分布函数
随机向量
条件概率
期望
期望是随机变量的均值
机器学习
常见的机器学习类型
损失函数
损失函数是一个非负实数函数,用来量化模型预测和真实标签之间的差异。
平方损失函数
期望风险
梯度下降法
学习率的选择:中间的效果最好
随机梯度下降
小批量随机梯度下降法
欠拟合与过拟合
泛化误差
泛化误差大会导致过拟合
正则化
控制过拟合:正则化
什么是优化?
- 使得经验风险最小
什么是正则化
- 降低模型的复杂度。所有损害优化的方法都是正则化
提前停止
线性回归
经验风险最小化
结构风险最小化
曲线拟合
多项式曲线拟合
似然函数
最大似然估计
贝叶斯公式
模型选择
引入验证集(Validation Set)
将训练集分为两部分:
- 训练集 Training Set
- 验证集 Validation Set
如何选择模型?
- 在训练集上训练不同的模型
- 选择在验证集上错误最小的模型
交叉验证
偏差-方差分解
上图从左到右的式子为:偏差、方差、噪声
既要最小偏差,也要最小方差。所以要最小偏差和方差