【神经网络与深度学习】神经网络或机器学习的相关基础概念(上)

本文介绍了神经网络与深度学习中的关键概念,包括表示学习、特征提取与深度学习的区别,以及梯度下降法、损失函数、正则化、模型选择等核心原理。讨论了如何通过训练集和验证集进行模型评估,以及偏差-方差分解在理解模型性能中的作用。
摘要由CSDN通过智能技术生成

神经网络与深度学习课程链接–复旦大学邱锡鹏教授
在这里插入图片描述

机器学习一般流程:

在这里插入图片描述

什么是表示学习?

  • 通过构建具有一定“深度”的模型,可以让模型来自动学习好的特征表示,从而最终提升预测或识别的准确性。

在这里插入图片描述

特征提取与表示学习的区别?

  • 特征提取:基于任务或先验对去除无用特征
  • 表示学习:通过深度模型学习高层语义特征

什么是深度学习?

  • 深度学习=表示学习+决策(预测)学习
    在这里插入图片描述

离散随机变量

伯努利分布

在这里插入图片描述

二项分布

在这里插入图片描述

连续随机变量

在这里插入图片描述

高斯分布

在这里插入图片描述

累积分布函数

在这里插入图片描述
在这里插入图片描述

随机向量

在这里插入图片描述

条件概率

在这里插入图片描述

期望

期望是随机变量的均值
在这里插入图片描述

机器学习

在这里插入图片描述

常见的机器学习类型

在这里插入图片描述

损失函数

损失函数是一个非负实数函数,用来量化模型预测和真实标签之间的差异。

平方损失函数 在这里插入图片描述

期望风险

在这里插入图片描述

梯度下降法


学习率的选择:中间的效果最好
在这里插入图片描述

随机梯度下降

在这里插入图片描述

小批量随机梯度下降法

在这里插入图片描述

欠拟合与过拟合

在这里插入图片描述

泛化误差

在这里插入图片描述
泛化误差大会导致过拟合

正则化

控制过拟合:正则化
在这里插入图片描述

什么是优化?

  • 使得经验风险最小

什么是正则化

  • 降低模型的复杂度。所有损害优化的方法都是正则化
    在这里插入图片描述

提前停止

在这里插入图片描述

线性回归

在这里插入图片描述

经验风险最小化

在这里插入图片描述

结构风险最小化

在这里插入图片描述

曲线拟合

在这里插入图片描述

多项式曲线拟合

在这里插入图片描述

似然函数

在这里插入图片描述

最大似然估计

在这里插入图片描述

贝叶斯公式

在这里插入图片描述

模型选择

引入验证集(Validation Set)
将训练集分为两部分:

  • 训练集 Training Set
  • 验证集 Validation Set

如何选择模型?

  • 在训练集上训练不同的模型
  • 选择在验证集上错误最小的模型

交叉验证

在这里插入图片描述

偏差-方差分解

在这里插入图片描述
上图从左到右的式子为:偏差、方差、噪声
在这里插入图片描述
既要最小偏差,也要最小方差。所以要最小偏差和方差
在这里插入图片描述

常用的定理

没有免费午餐定理

在这里插入图片描述

丑小鸭定理

在这里插入图片描述

奥卡姆剃刀原理

在这里插入图片描述

归纳偏置

在这里插入图片描述

PAC 可能近似正确

在这里插入图片描述

样本复杂度

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值