总结一下常用的算法

Other

初始化二维vector

vector< vector<int> >g(n+1, vector<int>(n+1, 0));

初始化:

	memset(a, 0/-1/INF,sizeof(a)); //初始化数组a,使其中值为0/-1/INF。
	memcpy(b,a,sizeof(a)); // 将数组a中的值复制到新数组b中。

字符串:

	string s;
	s.substr(pos,len); // 获得字符串s从位置pos开始长度为len的子串。
	s.push_back('c'); //在字符串s的尾部添加字符c
	s.pop_back(); //弹出字符串s的最后一个元素
	

C语言的排序:

//对数组a[1]-a[100]排序
int cmp(const void *a, const void *b){
	return *(int *)a - *(int *)b;
}
qsort(a+1, 100, sizeof(int), cmp);

//对结构体a[1]-a[100]排序
struct Node{
    char s;
    int cnt;
}a[105];
int cmp(const void *a, const void *b){
	return (*(Node *)a).cnt - (*(Node *)b).cnt;
}
qsort(a+1, 100, sizeof(Node), cmp);

C语言的文件操作:

FILE *file= fopen(filename, "r");                //打开文件句柄
fclose(file);                                    //关闭文件 
 
1.    ch=fgetc(file)                             //一次读一个文件中的字符 
      while((ch=fgetc(file))!=EOF) {}            //读取文件中所有的字符,直至碰见了EOF 

2.    fputc('a', file);                         //一次写一个字符a到文件中

3.    fputs("hello world!", file);              //一次写一个字符串""到文件中(会覆盖原来的数据) 

4.    char arr[10];    fgets(arr, 10, file);    //一次从文件中读5个字节的数据到数组arr中 

5.    char str[10]; int a=10;     
      fprintf(file, "%s %d\n", str, a);        //将字符串和整数按照格式化的方式写入文件file中

6.    fscanf(file, "%s %d\n", str, a);         //将文件中的数据读入至str字符串和整数a中 
      while(fscanf(file, "%s", str)!=EOF){}    //从文件中按照单词读取数据,遇见空格或者换行符则停止

后缀表达式求值:

#include<bits/stdc++.h>
using namespace std;
int main(){
	stack<int>s;
	string str; cin>>str;
	int len=str.length(), temp=0;
	for(int i=0; i<len; i++){
		if(str[i]>='0' && str[i]<='9') temp=temp*10+(str[i]-'0');
		else if(str[i]=='.'){
			s.push(temp); temp=0;
		}
		else if(str[i]=='@') break;
		else {
			int se=s.top(); s.pop();
			int fi=s.top(); s.pop();
			if(str[i]=='+')   s.push(fi+se);
			else if(str[i]=='-')   s.push(fi-se);
			else if(str[i]=='/')   s.push(fi/se);
			else if(str[i]=='*')   s.push(fi*se);
		}
	} 
	cout<<s.top()<<endl;
	return 0;
}

中缀表达式转为后缀表达式

#include<bits/stdc++.h>
using namespace std;
string mid_str, pre_str;

int get_priority(char c){
	if(c=='+' || c=='-') return 1;
	else if(c=='*' || c=='/') return 2;
	else return 0;
}
bool is_num(char ch){
	if(ch>='0' && ch<='9') return true;
	else return false;
}
string mid2pre_string(string str){
	string postfix="";
	stack<char>oper;
	int len=str.length();
	for(int i=0; i<len; i++){
		char ch=str[i];
		if(is_num(ch)) postfix+=ch;       //如果是操作数 	
		else if(ch=='(') oper.push(ch);
		else if(ch==')'){
			while(!oper.empty() && oper.top() != '('){
				postfix += oper.top();
				oper.pop();
			}
			oper.pop();
		}
		else {
			while(!oper.empty() && get_priority(ch)<=get_priority(oper.top())){
				postfix += oper.top();
				oper.pop();
			} 
			oper.push(ch);
		}	
	}
	while(!oper.empty()){
		postfix += oper.top();
		oper.pop();
	}
	return postfix;
}
int main(){
	cin>>mid_str;    //输入中缀表达式
	pre_str=mid2pre_string(mid_str);  // 中缀转为前缀
	cout<<pre_str<<endl; 
	return 0;
}

格雷编码的算法公式
在这里插入图片描述

第 i (i≥0) 个格雷码即为:gi=i⊕⌊i/2⌋,向下取整。

数论方面

求整数n的不同质因数个数

方法:O(sqrt(n))
long long n;
int ans=0;
for(long long i=2; i*i<=n; i++){
	if(n%i==0) ans++;
	while(n%i==0) n/=i;
}
if(n!=1) ans++;

求质数的2种方法

方法一:埃及筛O(nlogn)
	bool prime[maxn];//prime[i]为false代表i是质数 
	memset(prime,false,sizeof(prime)); 
	prime[1]=true;
    for(int i=2;i<=n;i++){
    	if(!prime[i]) {
    		for(int j=i+i;j<=n;j+=i) prime[j]=true;
		}
	}
方法二:欧拉筛O(n)
 int prime[maxn],cnt=0;
    bool vis[maxn];
    memset(vis,false,sizeof(vis));
    for(int i=2;i<=n;i++){
    	if(!vis[i]) prime[++cnt]=i;
    	for(int j=1;j<=cnt&&i*prime[j]<=n;j++){
			  vis[i*prime[j]]=true;
			  if(i%prime[j]==0) break;
		    
		}
	}

最大公因数

inline int gcd(int a,int b){ return b?gcd(b,a%b):a; }

最小公倍数

inline int lcm(int a,int b){ return a/gcd(a,b)*b; }

费马小定理求逆元

inline int inv(int a,int mod){ return qpow(a,mod-2,mod)%mod; }

快速幂

int qpow(int a,int b,int mod){
	int res=1;
	while(b){
		if(b&1) res=res*a%mod;
		b>>=1;
		a=a*a%mod; 
	}
	return res;
} 

快速乘

int qmul(int a,int b,int mod){
	int res=0;
	while(b){
		if(b&1) res=(res+a)%mod;
		b>>=1;
		a=(a+a%mod);
	}
	return res;
}

二分 O(logn)

解决具有单调性的问题

形如:

int l=0,r=INF;
bool check(int x){
}
while(l<r){
    int mid=l+r>>1;
    if(check(mid)) l=mid;
    else r=mid-1;

}

三分 O(logn)

解决非线性函数形状的问题(比如n次方函数,n>1)

int l=0,r=INF;
int cal(int x){
}
while(l<r){
    int mid1=l+(r-l)/3;
    int mid2=r-(r-l)/3;
    if(cal(mid1)<cal(mid2)) l=mid1;
    else r=mid2;

}

离散化

int a[maxn],lsh[maxn],cnt;
inline int get(int x){
    return lower_bound(lsh+1,lsh+1+cnt,x)-lsh;
}
for(int i=1;i<=n;i++){
   cin>>a[i]; lsh[i]=a[i];
}
sort(lsh+1,lsh+1+n);
cnt=unique(lsh+1,lhs+1+n)-lsh-1;

差分

特点:以O(1)的复杂度修改区间值

int s[maxn];  //差分数组
for(int i=1;i<=n;i++){
	s[i]=a[i]-a[i-1];
}
//q次修改区间[l,r]
for(int i=1;i<=q;i++){
	int l,r,x; cin>>l>>r>>x;
    s[l]+=x; s[r+1]-=x;
}

博弈论

Nim博弈

Nim博弈定义:
有n 堆石子(n > 0),每一堆有ai (ai > 0, 1 <= i <= n)个石子。
每人每次可以从任意一堆石子里,取出任意多枚石子扔掉,可以取完,不能不取,每次只能从一堆里取。最后没有石子可以取的人输掉这场游戏。
设甲为先手,乙为后手,两个人以最佳策略进行操作。
给出n,和这n 堆石子分别的数量,请问是否存在先手必胜的策略?
结论:
如果这n堆石子的数量满足:
a1 xor a2 xor a3 xor … xor an = 0.
先手必败,否则先手必胜

字符串方面

字典树

应用一:查询n个数中选取两个数做异或得到的最大值
int trie[maxn][4],tot=0;
void Insert(int p){
//将数字p的二进制形式按照高位进行插入
	int x=0;
	for(int i=30;i>=0;i--){
		int u=(p>>i)&1;
		if(!trie[x][u]) trie[x][u]=++tot;
		x=trie[x][u];
	}
}
int Search(int p){
	int res=0,x=0;
	for(int i=30;i>=0;i--){
		int u=(p>>i)&1;
		if(trie[x][!u]){
			res+=(1<<i);
			x=trie[x][!u];
		} 
		else x=trie[x][u];
	}
	return res;
}
应用二:查询n个字符串之间是否有前缀包含关系
int trie[maxn][14],tot=0,tag[maxn];
void Insert(char s[]){
	int len=strlen(s),x=0;
	for(int i=0;i<len;i++){
		int y=s[i]-'0';
		if(!trie[x][y]) trie[x][y]=++tot;
		x=trie[x][y];
	}
	tag[x]++;
}
int Search(char s[]){
	int x=0,len=strlen(s),res=0;
	for(int i=0;i<len;i++){
		int y=s[i]-'0';
		if(!trie[x][y]) break;
		x=trie[x][y];
		if(i<len-1&&tag[x]) return 2;
	}
	return tag[x];
}

AC自动机

用来求解字符串多匹配问题,即n个模式串,1个文本串。主要有以下两类问题

  1. 求解文本串中出现了多少个模式串;
  2. 求解每个模式串在文本串中出现的次数。
#include <bits/stdc++.h>
using namespace std;
const int maxn=1e6+10;

int n,trie[maxn][30],tot=0;
//记录某个串的出现次数 //失败时的回溯指针
int cnt[maxn],fail[maxn*30];  
char str[maxn]; //模式串
char s[maxn];  //文本串
//建立字典树
void Insert(char *s){
	int x=0,len=strlen(s);
	for(int i=0;i<len;i++){
		int y=s[i]-'a';
		if(!trie[x][y]) trie[x][y]=++tot;
		x=trie[x][y];
	}
	cnt[x]++;  //当前节点单词数+1
}
//给fail数组赋值
void getFail(){
	queue<int>q;
	for(int i=0;i<26;i++){
		if(trie[0][i]) {
			fail[trie[0][i]]=0;
			q.push(trie[0][i]);
		}
	}
	
//fail[x]    ->当前节点x的失败指针指向的地方
//tire[x][i] -> 下一个字母为i+'a'的节点的下标为tire[x][i]
	while(!q.empty()){
		int x=q.front(); q.pop();
		for(int i=0;i<26;i++){
			//如果有这个子节点为字母i+'a',则
            //让这个节点的失败指针指向(((他父亲节点)的失败指针所指向的那个节点)的下一个节点)
			if(trie[x][i]){
				fail[trie[x][i]]=trie[fail[x]][i];
				q.push(trie[x][i]);
			}
			//否则就让当前节点的这个子节点
            //指向当前节点fail指针的这个子节点
			else trie[x][i]=trie[fail[x]][i];
		}
	}
}
//查询字典树中的单词在字符串s中出现的次数
int Search(char *s){
	int x=0,len=strlen(s),res=0;
	for(int i=0;i<len;i++){
		//遍历文本串
		x=trie[x][s[i]-'a'];
		//一直向下寻找,直到匹配失败(失败指针指向根或者当前节点已找过).
		for(int j=x; j&&cnt[j]!=-1; j=fail[j]) {
			res+=cnt[j];
			cnt[j]=-1;
		}
	}
	return res;
}
int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr); cout.tie(nullptr);
    int n; cin>>n;
    memset(cnt,0,sizeof(cnt)); 
    for(int i=1;i<=n;i++){
    	cin>>str; Insert(str);
	}
	getFail();   //对建好的字典树初始化匹配失败指针数组fail[]
	cin>>s;
	cout<<Search(s)<<endl;
    return 0;
}

回文自动机(PAM)

一个理解不了的算法。时间复杂度O(n)

fail[u]:u后缀边指向的点
len[u]:u所表示的回文串长度
trie[u][ch]:u前后各增加一个字符ch得到的点
str[i]:是需要构造的串的第i
cnt[i]:表示以i 结尾的回文串的个数
last:指向最长回文子串的右端点

1.求字符串str中以每一位字符结尾的回文串个数,即截至到当前字符的cnt[last]
#include <bits/stdc++.h>
using namespace std;
const int maxn=2e6+10;
int sz, last, r0, r1;
int trie[maxn][26], fail[maxn], len[maxn], cnt[maxn];
char str[maxn];
void Init() {
    r0 = sz++, r1 = sz++; last = r1;
    len[r0] = 0, fail[r0] = r1;
    len[r1] = -1, fail[r1] = r1;
}
void insert(int ch, int idx) {
    int u = last;
    while (str[idx] != str[idx - len[u] - 1])u = fail[u];
    if (!trie[u][ch]) {
        int cur = ++sz, v = fail[u];
        len[cur] = len[u] + 2;
        for (; str[idx] != str[idx - len[v] - 1]; v = fail[v]);
        fail[cur] = trie[v][ch]; trie[u][ch] = cur;
        cnt[cur] = cnt[fail[cur]] + 1;
    }
    last = trie[u][ch];
}
//建立回文树
void build(char* str) {
    int len = strlen(str);
    for (int i = 0; i < len; i++) {
    	 insert(str[i] - 'a' + 1, i);
         printf("%d ", cnt[last]);
	}  
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr); cout.tie(nullptr);
    Init();
    cin>>str;
    build(str);
    return 0;
}
2.求所有回文子串s的出现的次数乘以这个子串的长度的最大值。
#include <bits/stdc++.h>
using namespace std;
const int maxn=2e6+10;

int sz, last, r0, r1;
int trie[maxn][26], fail[maxn], len[maxn], cnt[maxn];
LL ans=0;
char str[maxn];
void Init() {
    r0 = sz++, r1 = sz++; last = r1;
    len[r0] = 0, fail[r0] = r1;
    len[r1] = -1, fail[r1] = r1;
}
void insert(int ch, int idx) {
    int u = last;
    while (str[idx] != str[idx - len[u] - 1])u = fail[u];
    if (!trie[u][ch]) {
        int cur = ++sz, v = fail[u];
        len[cur] = len[u] + 2;
        for (; str[idx] != str[idx - len[v] - 1]; v = fail[v]);
        fail[cur] = trie[v][ch]; trie[u][ch] = cur;
        /与上面不一致
    }
    last = trie[u][ch];
    cnt[last]++;
    /与上面不一致
}
//建立回文树
void build(char* str) {
    int len = strlen(str);
    for (int i = 0; i < len; i++) {
    	 insert(str[i] - 'a' + 1, i);
	}  
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr); cout.tie(nullptr);
    Init();
    cin>>str;
    build(str);
    for(int i=sz;i>=0;i--){
    	cnt[fail[i]]+=cnt[i];
    	ans=max(ans,1LL*cnt[i]*len[i]);
	}
    cout<<ans<<endl;
    return 0;
}

字符串匹配的两种算法

暴力算法O(m*n)
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e4+10;
int main(){
	char str1[maxn], str2[maxn];
	cin>>str1>>str2;
	int i=0, j=0, len1=strlen(str1), len2=strlen(str2);
	while(i<len1 && j<len2){
		if(str1[i]==str2[j]){
			++i; ++j;
		}
		else {
			i=i-j+2; j=1;
		}
	}
	if(j>=len2) cout<<i-j<<endl;
	else cout<<-1<<endl;
	return 0;
}
KMP算法O(m+n)

图论方面

并查集

int fa[maxn];
void Init(){
	for(int i=1;i<=n;i++) fa[i]=i; 
} 
inline int find(int x){
	return fa[x]==x?fa[x]:fa[x]=find(fa[x]);
}
inline void Union(int u,int v){
	int x=find(u),y=find(v);
	if(x!=y) fa[x]=y;
}

最小生成树(MST)的两种算法

Kruskal算法

Kruskal算法O(m*logm)
int fa[N],cnt=0,ans=0;
void Init(){
	for(int i=1;i<=n;i++) fa[i]=i; 
} 
inline int find(int x){
	return fa[x]==x?fa[x]:fa[x]=find(fa[x]);
}
inline void Union(int u,int v){
	int x=find(u),y=find(v);
	if(x!=y) fa[x]=y;
}
struct Edge{
	int u,v,w;
	bool operator < (const Edge&b) const{
	     return w<b.w;
	}
}e[maxn];
void Kruskal(){
	sort(e+1,e+1+m);
	Init();
	for(int i=1;i<=m;i++){
		int u=e[i].u,v=e[i].v,w=e[i].w;
		int x=find(u),y=find(v);
		if(x!=y){
			ans+=w; fa[x]=y; cnt++;
		} 
	}
	if(cnt!=n-1) cout<<"不能生成MST"<<endl;
	else cout<<ans<<endl;
}

Prim算法

暴力做法 时间复杂度O(n*n)
//与Dijkstra算法很相似,唯一的不同是松弛权值部分
int n,m,s[N][N],d[N],ans=0;
bool vis[N];
void Prim(){
	memset(s,INF,sizeof(s));
	memset(vis,false,sizeof(vis));
	for(int i=1;i<=m;i++){
		int u,v,w; cin>>u>>v>>w;
		s[u][v]=s[v][u]=min(w,s[u][v]);
	}
	for(int i=1;i<=n;i++) d[i]=s[1][i];
	d[1]=0; vis[1]=true;
	for(int i=1;i<n;i++){
		int minn=INF,pos;
		for(int j=1;j<=n;j++){
			if(!vis[j]&&d[j]<minn){
				minn=d[j]; pos=j;
			}
		}
		ans+=minn; vis[pos]=true;
		for(int j=1;j<=n;j++) d[j]=min(d[j],s[pos][j]);
	}
	bool flag=true;
	for(int i=1;i<=n;i++){
		if(!vis[i]) { flag=false; break; }
	}
	if(!flag) cout<<"不能生成MST"<<endl; 
	else cout<<ans<<endl;
}

通过优先队列进行优化O(n*logn)
int n,m,d[N],ans=0;
bool vis[N];
vector<pair<int,int> >g[N];
void Prim(){
	memset(vis,false,sizeof(vis));
	memset(d,INF,sizeof(d)); 
	for(int i=1;i<=m;i++){
		int u,v,w; cin>>u>>v>>w;
		g[u].push_back({v,w});
		g[v].push_back({u,w});
	}
	priority_queue<pair<int,int> >q;
	q.push({1,0});
	while(!q.empty()){
		pair<int,int>p=q.top(); q.pop(); 
		int u=p.first;
		if(vis[u]) continue;
		vis[u]=true;  ans+=p.second;
		int len=g[u].size();
		for(int i=0;i<len;i++){
			int v=g[u][i].first,w=g[u][i].second;
			if(d[v]>w){
				d[v]=w;
				q.push({v,w});
			}
		}
	}
	bool flag=true;
	for(int i=1;i<=n;i++){
		if(!vis[i]) { flag=false; break; }
	}
	if(!flag) cout<<"不能生成MST"<<endl; 
	else cout<<ans<<endl;
}

拓扑排序

暴力做法O(nm)
    int in[maxn],topu[maxn],tot=0;
    for(int i=1;i<=n;i++){
    	int pos;
    	for(int j=1;j<=n;j++){
    		if(in[j]==0) {
    			pos=j; topu[++tot]=j;
    			in[j]--;
    			break;
			}
		}
		for(int j=1;j<=n;j++){
			if(e[pos][j]) in[j]--;
		}
	}
队列优化O(n+m)
    vector<int>g[maxn],topu;
    int in[maxn];
    queue<int>q;
    for(int i=1;i<=n;i++){
    	if(in[i]==0) q.push(i);
	}
	while(!q.empty()){
		if(q.size()>1) cout<<"该拓扑排序的排序规则不唯一"<<endl;
		int x=q.front(); q.pop();
		topu.emplace_back(x);
		for(auto it:g[x]){
			in[it]--;
			if(in[it]==0) q.push(it);
		}
	}

最短路的四种算法

Floyed算法

多源最短路O(n^3)

可以处理负权和负权边,但是不能判断负权回路

 int d[maxn][maxn];
    for(int k=1;k<=n;k++){
    	for(int i=1;i<=n;i++){
    		for(int j=1;j<=n;j++) d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
		}
	}

Dijkstra算法

单源最短路–暴力做法O(n^2)

不能处理负权和负权边,也不能判断负权回路

int d[maxn],e[maxn][maxn];
bool vis[maxn];
void Dijkstra(int s){
	memset(e,INF,sizeof(e));
	memset(vis,false,sizeof(vis));
	for(int i=1;i<=m;i++){
		cin>>u>>v>>w;
		e[u][v]=min(w,e[u][v]);
	}
	for(int i=1;i<=n;i++)  d[i]=e[s][i];
	d[s]=0; vis[s]=true;
	int minn=INF,pos;
	for(int i=1;i<n;i++){
		for(int j=1;j<=n;j++){
			if(!vis[j]&&d[j]<minn) minn=d[j],pos=j;
		}
		vis[pos]=true;
		for(int j=1;j<=n;j++) {
			if(d[j]>d[pos]+e[pos][j]) d[j]=d[pos]+e[pos][j];
		}
	}
}
单源最短路–通过优先队列进行优化O(mlogn)
int d[maxn];
struct Edge{
	int v,w;
	bool operator < (const Edge&b) const{
		return w>b.w;
	}
};
vector<Edge>g[maxn];
bool vis[maxn];
void Dijkstra(int s){
	memset(vis,false,sizeof(vis));
	for(int i=1;i<=m;i++){
		cin>>u>>v>>w;
		g[u].push_back({v,w});
	}
	memset(d,INF,sizeof(d));
	d[s]=0; 
	priority_queue<Edge>q;
	q.push({s,0});
    while(!q.empty()){
    	Edge p=q.top(); q.pop();
    	int u=p.v;
    	if(vis[u]) continue;
    	vis[u]=true;
    	for(auto it:g[u]){
    		int v=it.v,w=it.w;
    		if(d[v]>d[u]+w) {
    			d[v]=d[u]+w;
    		    q.push({v,d[v]});
			}
		}
	}
}

Bellman-Ford算法

单源最短路O(nm)

可以处理负权和负权边,也可以判断负权回路。还可以处理有边数限制的最短路问题。

无边数限制,求最短路
int n,m,k,d[N];
struct Edge{
	int u,v,w;
}e[maxn];
void Bellman_ford(int s){
	for(int i=1;i<=m;i++) cin>>e[i].u>>e[i].v>>e[i].w;
	memset(d,INF,sizeof(d)); 
	d[s]=0;
	for(int i=1;i<=n-1;i++){  
		bool flag=true; //判断每一轮是否进行了松弛
		for(int j=1;j<=m;j++){
			int u=e[j].u,v=e[j].v,w=e[j].w;
			if(d[v]>d[u]+w){
				d[v]=d[u]+w;
				flag=false;
			}
		}
		if(flag) break; //若没有进行过松弛,则提前跳出
	}
}
有边数k限制,求最短路
int n,m,k,d[N],book[N];
struct Edge{
	int u,v,w;
}e[maxn];
void Bellman_ford(int s){
	for(int i=1;i<=m;i++) cin>>e[i].u>>e[i].v>>e[i].w;
	memset(d,INF,sizeof(d)); 
	d[s]=0;
	for(int i=1;i<=k;i++){  
		bool flag=true; //判断每一轮是否进行了松弛
		memcpy(book,d,sizeof(d));
		for(int j=1;j<=m;j++){
			int u=e[j].u,v=e[j].v,w=e[j].w;
			if(d[v]>book[u]+w){  //每一轮只更新边长为1的周边点
				d[v]=book[u]+w;
				flag=false;
			}
		}
		if(flag) break; //若没有进行过松弛,则提前跳出
	}
}
判断是否有负环存在

只需要将松弛轮数从n-1改成n,看看新加的一轮是否还会有松弛现象发生,若有,则存在负环。

int n,m,k,d[N];
struct Edge{
	int u,v,w;
}e[maxn];
bool Bellman_ford(int s){
	for(int i=1;i<=m;i++) cin>>e[i].u>>e[i].v>>e[i].w;
	memset(d,INF,sizeof(d)); 
	d[s]=0;  
	bool flag; //判断每一轮是否进行了松弛
	for(int i=1;i<=n;i++){  
		flag=true;
		for(int j=1;j<=m;j++){
			int u=e[j].u,v=e[j].v,w=e[j].w;
			if(d[u]!=INF&&d[v]>d[u]+w){  //d[u]!=INF的条件在所有的权值都不含负数的情况下不需要
				d[v]=d[u]+w;
				flag=false;
			}
		}
		if(flag) break; //若没有进行过松弛,则提前跳出
	}
	if(!flag) return true; //若第n轮还能进行松弛,则说明有负环
	return false;
}

SPFA算法----队列优化的Bellman-ford算法

平均时间复杂度是O(m);最坏时间复杂度是O(nm)

可以处理负权和负权边,也可以判断负权回路。还可以处理有边数限制的最短路问题。

求单源最短路
vector<PII>g[maxn]; //用邻接表存边和权值
bool vis[maxn]; //vis[i]判断点i是否在队列里,若在则是true
int d[maxn];  
void spfa(int s){
	memset(d,INF,sizeof(d));
	memset(vis,false,sizeof(vis));
	queue<int>q;
	d[s]=0; vis[s]=true;
	q.push(s); 
	while(!q.empty()){
		int u=q.front(); q.pop();
		vis[u]=false;  //弹出以后点u不在队列里
		for(auto it:g[u]){
			int v=it.first,w=it.second;
			if(d[v]>d[u]+w){
				d[v]=d[u]+w;
				if(!vis[v]){
					vis[v]=true;  q.push(v);
				}
			}
		}
	}
}
判断整个图中是否有负环存在

判断负环需要注意的两点

  1. 初始时所有点都需要入队,以遍历到所有可能含负环的起点
  2. 通过一个cnt[i]数组用来维护从最短路起点到点i的边条数,若大于等于n则说明至少有某个点走过两次,即含有负环。
vector<PII>g[maxn]; //用邻接表存边和权值
bool vis[maxn]; //vis[i]判断点i是否在队列里,若在则是true
int d[maxn],cnt[maxn];  
bool spfa(){
	queue<int>q;  
	for(int i=1;i<=n;i++){  
		q.push(i); cnt[i]=0; vis[i]=true; d[i]=INF;
	}
	while(!q.empty()){
		int u=q.front(); q.pop();
		vis[u]=false;
		for(auto it:g[u]){
			int v=it.first,w=it.second;
			if(d[v]>d[u]+w){
				d[v]=d[u]+w;
				cnt[v]=cnt[u]+1;
				if(cnt[v]>=n) return true;
				if(!vis[v]){
					vis[v]=true; q.push(v);
				}
			}
		}
	}
	return false;
}

最近公共祖先(LCA)倍增做法-查询效率O(logn)

int depth[maxn],fa[maxn][30];
vector<int>g[maxn];
void dfs(int u,int f,int d){
	fa[u][0]=f; depth[u]=d;
	int len=g[u].size();
	for(int i=0;i<len;i++){
		int v=g[u][i];
		if(v!=f) dfs(v,u,d+1);
	}
}
void Init(){
	dfs(s,-1,1);
    for(int j=0;(1<<j+1)<=n;j++){
	    for(int i=1;i<=n;i++){
			if(fa[i][j]==-1) fa[i][j+1]=fa[i][j];
			else fa[i][j+1]=fa[fa[i][j]][j];
		}
	}
}
int LCA(int u,int v){
	if(depth[u]<depth[v]) swap(u,v);
	int temp=depth[u]-depth[v];
	for(int i=0;(1<<i)<=temp;i++){
		if(temp&(1<<i)) u=fa[u][i];
	}
	if(u==v) return u;
	for(int i=log2(n);i>=0;i--){
		if(fa[u][i]!=fa[v][i]){
			u=fa[u][i]; v=fa[v][i];
		}
	}
	return fa[u][0];
}

树上差分

树上差分分为点权差分边权差分
作用:在O(1)的复杂度修改树链权值的前提下,统计某一特定长度的树链的权值和。

#include <bits/stdc++.h>
#include <random>
using namespace std;
const int maxn=2e6+10;


int n,ans[maxn];
int fa[maxn][30];

vector<int>g[maxn];
void dfs(int u,int f){
    fa[u][0]=f;
	int len=g[u].size();
	for(int i=0;i<len;i++){
		int v=g[u][i];
		if(v!=f) dfs(v,u);
	} 
}
void Init(){
	for(int j=0;(1<<j+1)<n;j++){
		for(int i=1;i<=n;i++){
			if(fa[i][j]==-1) fa[i][j+1]=-1;
			else fa[i][j+1]=fa[fa[i][j]][j];
		}
	}

	
}
int ask(int x,int k){
	for(int i=24;i>=0;i--){
		if((k>>i)&1) x=fa[x][i];
	}
	return max(x,0);
}
//对差分数组求和,从叶子往根求权值和

void dfs_ans(int u,int fa){
	for(auto it:g[u]){
		if(it!=fa){
			dfs_ans(it,u);
			ans[u]+=ans[it];
		}
	}
}
int main() {
	ios::sync_with_stdio(false);
	cin.tie(nullptr); cout.tie(nullptr);
    cin>>n;
    memset(ans,0,sizeof(ans));
    rep(i,1,n-1){
    	int u,v; cin>>u>>v;
    	g[u].eb(v); g[v].eb(u);
	}
	dfs(1,-1);  Init();
	rep(i,1,n) {
		int x; cin>>x;
		ans[i]++;   
		ans[ask(i,x+1)]--;
	}
	dfs_ans(1,-1);
	rep(i,1,n) cout<<ans[i]<<" ";
	
    return 0;
}

动态规划方面

背包问题

01背包O(n*k)
	f[0][0]=0;
	for(int i=1;i<=n;i++){
		for(int j=0;j<=k;j++){
			f[i][j]=f[i-1][j];
			if(j>=v[i]) f[i][j]=max(f[i][j],f[i-1][j-v[i]]+w[i]);
		}
	}
01背包+滚动数组优化O(n*k)
    f[0]=0;
	for(int i=1;i<=n;i++){
		for(int j=k;j>=0;j--){
			if(j>=v[i]) f[j]=max(f[j],f[j-v[i]]+w[i]);
		}
	}
完全背包O(n*k)
	f[0][0]=0;
	for(int i=1;i<=n;i++){
		for(int j=0;j<=k;j++){
			f[i][j]=f[i-1][j];
			if(j>=v[i]) f[i][j]=max(f[i][j],f[i][j-v[i]]+w[i]);
		}
	}
完全背包+滚动数组优化O(n*k)
f[0]=0;
	for(int i=1;i<=n;i++){
		for(int j=0;j<=k;j++){
			if(j>=v[i]) f[j]=max(f[j],f[j-v[i]]+w[i]);
		}
	}
多重背包O(nms)
	f[0][0]=0;
	for(int i=1;i<=n;i++){
		for(int j=0;j<=m;j++){
			f[i][j]=f[i-1][j];
			for(int k=0;k<=s[i]&&k*v[i]<=j;k++){
			    f[i][j]=max(f[i][j],f[i-1][j-k*v[i]]+k*w[i]);
			}
		}
	}
多重背包+滚动数组优化O(nms)
f[0]=0;
	for(int i=1;i<=n;i++){
		for(int j=m;j>=0;j--){
			for(int k=0;k<=s[i]&&k*v[i]<=j;k++){
			    f[j]=max(f[j],f[j-k*v[i]]+k*w[i]);
			}
		}
	}

线性dp

最长上升子序列(LIS)

暴力做法 时间复杂度O(n*n)
int d[maxn],n;
int LIS(int a[]){
	for(int i=1;i<=n;i++) d[i]=1;
	int res=0;
	for(int i=1;i<=n;i++){
		for(int j=1;j<i;j++){
			if(a[i]>a[j]) d[i]=max(d[i],d[j]+1);
		}
		res=max(res,d[i]);
	}
	return res;
}
贪心+二分优化 时间复杂度O(nlogn)
int low[maxn],res,n;
int LIS(int a[]){
	memset(low,INF,sizeof(low));
	low[1]=a[1]; res=1;
	for(int i=2;i<=n;i++){
		if(a[i]>low[res]) low[++res]=a[i];
		else{
			int pos=lower_bound(low+1,low+1+res,a[i])-low; //最长递增子序列
			int pos=upper_bound(low+1,low+1+res,a[i])-low; //最长非递减子序列
			low[pos]=a[i];
		}
	}
	return res;
}

最长公共子序列 (LCS)

暴力 时间复杂度O(m*n)
int f[maxn][maxn],n,m;
int LCS(int a[],int b[]){
	memset(f,0,sizeof(f));
	for(int i=1;i<=n;i++){
		for(int j=1;j<=n;j++){
			if(a[i]==b[j]) f[i][j]=f[i-1][j-1]+1;
			else f[i][j]=max(f[i-1][j],f[i][j-1]);
		} 
	}
	return f[n][m];
}
借助LIS优化 时间复杂度O(nlogn)
int low[maxn],res,n,m;
int a[maxn],b[maxn];
int LIS(int a[]){
	memset(low,INF,sizeof(low));
	low[1]=a[1]; res=1;
	for(int i=2;i<=n;i++){
		if(a[i]>low[res]) low[++res]=a[i];
		else{
			int pos=lower_bound(low+1,low+1+res,a[i])-low;
			low[pos]=a[i];
		}
	}
	return res;
}
int LCS(int a[],int b[]){
    unordered_map<int,int>mp;
    //n为序列a的长度,m为序列b的长度
	//我们把序列b当成是递增的对照组,再将序列a映射成一个对应的序列,切记映射需初始化为-1
	//这样当序列a中的元素未存在序列b时,映射结果便为-1,不会计入LIS中 
    for(int i=1;i<=n;i++) mp[a[i]]=-1;
    for(int i=1;i<=m;i++) mp[b[i]]=i;
    for(int i=1;i<=n;i++) a[i]=mp[a[i]];
    return LIS(a);
}

区间dp

状压dp

树上dp

概率dp(期望dp)

树状数组

每一次操作的时间复杂度为O(logn)
数组c[x]储存的是区间[x,x-lowbit(x)+1]的值

单点更新,查询区间求和
int c[maxn];
inline int lowbit(int x) { return x&(-x); }
void update(int x,int y){  //节点x上加上y
	while(x<=n){
		c[x]+=y;
		x+=lowbit(x);
	}
}
int getsum(int x){       //求区间[1,x]的和
	int res=0;
	while(x>0){
		res+=c[x];
		x-=lowbit(x);
	}
	return res;
}
区间更新,查询单点

lowbit、updata、getsum三个函数完全与上一致。
唯一的不同在于建树使用的值不是原值a[i],而是序列a的差分值---->差分建树

int c[maxn],a[maxn],n,q;
inline int lowbit(int x) { return x&(-x); }
void update(int x,int y){
	while(x<=n){
		c[x]+=y;
		x+=lowbit(x);
	}
}
int getsum(int x){
	int res=0;
	while(x>0){
		res+=c[x];
		x-=lowbit(x);
	}
	return res;
}
int main() { 
	cin>>n>>q;
	rep(i,1,n){
	    cin>>a[i];
		if(i==1) update(i,a[i]);
		else update(i,a[i]-a[i-1]);
	}  
	while(q--){
		int opt,l,r,k; cin>>opt;
		if(opt==1) { //区间更新
			cin>>l>>r>>k;
			update(l,k);
			update(r+1,-k);
		}
		else {
		    cin>>l;   //单点查询
			cout<<getsum(l)<<endl; 
		}
	}
求逆序对O(nlogn)

大部分情况需要离散化

情况一:逆序对定义:i<j但a[i]>a[j]
int c[maxn],a[maxn],lsh[maxn],n,cnt;
LL ans;
inline int lowbit(int x) { return x&(-x); }
void update(int x){
	while(x<=n){
		c[x]++;
		x+=lowbit(x);
	}
}
int getsum(int x){
	int res=0;
	while(x>0){
		res+=c[x];
		x-=lowbit(x);
	}
	return res;
}
//获得离散化后的排序值
inline int get(int x) { return lower_bound(lsh+1,lsh+1+cnt,x)-lsh; }
int main() { 
    for(int i=1;i<=n;i++){
    	cin>>a[i];
    	lsh[i]=a[i];
	}
	//将数组a进行离散化
	sort(lsh+1,lsh+1+n);
	cnt=unique(lsh+1,lsh+1+n)-lsh-1;
	for(int i=1;i<=n;i++){
		int x=get(a[i]);
		update(x);
		ans+=(i-getsum(x));
	}
情况二:逆序对定义:i<j但a[i]>=a[j]

函数lowbit、update和getsum与上面完全一致。
唯一的不同在于由于a[i]和a[j]可以相等,所以我们的个数应该是首先减去本身,然后减去排序值比本身小一的个数,即 i-1-getsum(x-1)

int c[maxn],a[maxn],lsh[maxn],n,cnt;
LL ans;
inline int lowbit(int x) { return x&(-x); }
void update(int x){
	while(x<=n){
		c[x]++;
		x+=lowbit(x);
	}
}
int getsum(int x){
	int res=0;
	while(x>0){
		res+=c[x];
		x-=lowbit(x);
	}
	return res;
}
//获得离散化后的排序值
inline int get(int x) { return lower_bound(lsh+1,lsh+1+cnt,x)-lsh; }
int main() { 
    for(int i=1;i<=n;i++){
    	cin>>a[i];
    	lsh[i]=a[i];
	}
	//将数组a进行离散化
	sort(lsh+1,lsh+1+n);
	cnt=unique(lsh+1,lsh+1+n)-lsh-1;
	for(int i=1;i<=n;i++){
		int x=get(a[i]);
		update(x);
		ans+=(i-1-getsum(x-1));
	}
求区间最值

每一次查询或更新的操作的时间复杂度都为O(logn*logn)

int n,a[maxn],c[maxn];

inline int lowbit(int x)
{
    return x&(-x);
}
void update(int x){
	c[x]=a[x];
	for(int i=1;i<lowbit(x);i<<=1){
		c[x]=max(c[x],c[x-i]);
	} 
}
int query(int l,int r){
	int res=a[r];
	while(l<=r){
		res=max(a[r],res);
		for(--r;r-l>=lowbit(r);r-=lowbit(r)){
		  res=max(res,c[r]);
	    }
	}
	return res;
}

ST表

维护区间最值的离线算法。

  1. 不支持在线修改
  2. 预处理的算法复杂度为O(nlogn)
  3. 每次查询区间最值的时间复杂度为O(1)
int st[32][maxn]; //st[i][j]表示区间[j,j+2^i-1]的最大值,区间长度为2^i
void Init(){
	for(int i=1;i<=n;i++) st[0][i]=read();
	for(int i=1;i<=30;i++){
		for(int j=1;j+(1<<i)-1<=n;j++){
		    st[i][j]=max(st[i-1][j],st[i-1][j+(1<<i-1)]);
		}
	}
}
int query(int l,int r)
{
    int k=log2(r-l+1); 
    return max(st[k][l],st[k][r-(1<<k)+1]);
}

线段树

  • 5
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

&が&

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值