蓝桥c/c++B组题解
填空
空间
小蓝准备用 256MB 的内存空间开一个数组,数组的每个元素都是 32 位 二进制整数,如果不考虑程序占用的空间和维护内存需要的辅助空间,请问 256MB 的空间可以存储多少个 32 位二进制整数?
32位2进制数是4字节,空间总大小为256MB = 256*1024*1024B,所以最后答案应该是256*1024*1024/4 = 67108864;
卡片
小蓝有很多数字卡片,每张卡片上都是数字 0 到 9。
小蓝准备用这些卡片来拼一些数,他想从 1 开始拼出正整数,每拼一个,
就保存起来,卡片就不能用来拼其它数了。
小蓝想知道自己能从 1 拼到多少。
例如,当小蓝有 30 张卡片,其中 0 到 9 各 3 张,则小蓝可以拼出 1 到 10,
但是拼 11 时卡片 1 已经只有一张了,不够拼出 11。
现在小蓝手里有 0 到 9 的卡片各 2021 张,共 20210 张,请问小蓝可以从 1
拼到多少?
提示:建议使用计算机编程解决问题。
直接模拟
#include<bits/stdc++.h>
using namespace std;
int arr[10];
bool check(int k)
{
while(k)
{
if(arr[k%10])
{
arr[k%10] --;
}
else
{
return false;
}
k /= 10;
}
return true;
}
int main()
{
for(int i = 0; i < 10; i++)
{
arr[i] = 2021;
}
for(int i = 1; ; i++)
{
if(!check(i))
{
cout << i-1;
break;
}
}
return 0;
}
运行结果是3181;
直线
在平面直角坐标系中,两点可以确定一条直线。如果有多点在一条直线上,
那么这些点中任意两点确定的直线是同一条。
给定平面上 2 × 3 个整点 {(x, y)|0 ≤ x < 2, 0 ≤ y < 3, x ∈ Z, y ∈ Z},即横坐标
是 0 到 1 (包含 0 和 1) 之间的整数、纵坐标是 0 到 2 (包含 0 和 2) 之间的整数
的点。这些点一共确定了 11 条不同的直线。
给定平面上 20 × 21 个整点 {(x, y)|0 ≤ x < 20, 0 ≤ y < 21, x ∈ Z, y ∈ Z},即横
坐标是 0 到 19 (包含 0 和 19) 之间的整数、纵坐标是 0 到 20 (包含 0 和 20) 之
间的整数的点。请问这些点一共确定了多少条不同的直线。
暴力,定义k和b代表斜率和截距,枚举任意两个点的k和b,注意答案要加上斜率不存在的情况,最后答案是40257;
货物摆放
小蓝有一个超大的仓库,可以摆放很多货物。
现在,小蓝有 n 箱货物要摆放在仓库,每箱货物都是规则的正方体。小蓝
规定了长、宽、高三个互相垂直的方向,每箱货物的边都必须严格平行于长、
宽、高。
小蓝希望所有的货物最终摆成一个大的立方体。即在长、宽、高的方向上
分别堆 L、W、H 的货物,满足 n = L × W × H。
给定 n,请问有多少种堆放货物的方案满足要求。
例如,当 n = 4 时,有以下 6 种方案:1×1×4、1×2×2、1×4×1、2×1×2、 2 × 2 × 1、4 × 1 × 1。
请问,当 n = 2021041820210418 (注意有 16 位数字)时,总共有多少种
方案?
提示:建议使用计算机编程解决问题。
求约数个数然后暴力求解,答案是2430(可以保证a<=b<=c来减少循环次数)
路径
小蓝学习了最短路径之后特别高兴,他定义了一个特别的图,希望找到图
中的最短路径。
小蓝的图由 2021 个结点组成,依次编号 1 至 2021。
对于两个不同的结点 a, b,如果 a 和 b 的差的绝对值大于 21,则两个结点
之间没有边相连;如果 a 和 b 的差的绝对值小于等于 21,则两个点之间有一条
长度为 a 和 b 的最小公倍数的无向边相连。
例如:结点 1 和结点 23 之间没有边相连;结点 3 和结点 24 之间有一条无
向边,长度为 24;结点 15 和结点 25 之间有一条无向边,长度为 75。
请计算,结点 1 和结点 2021 之间的最短路径长度是多少。
提示:建议使用计算机编程解决问题。
利用动规,arr[i]中存储i到1的最短距离,最后输出arr[2021],答案是10266837;
#include<bits/stdc++.h>
using namespace std;
int arr[2030] = {0};
int f(int a, int b)
{
int a1 = a, b1 = b;
if(a < b)
{
swap(a, b);
}
while(b)
{
int t = b;
b = a%b;
a = t;
}
int ans = a;
ans = a1*b1/ans;
return ans;
}
int main()
{
for(int i = 0; i < 2022; i++)
{
arr[i] = 2147483645;
}
arr[1] = 0;
arr[2] = 2;
arr[3] = 3;
for(int i = 2; i <= 22; i++)
{
for(int j = 1; j < i; j++)
{
arr[i] = min(f(j, i)+arr[j], arr[i]);
}
}
for(int i = 22; i < 2022; i++)
{
for(int j = i-21; j < i; j++)
{
arr[i] = min(f(j, i)+arr[j], arr[i]);
}
}
cout << arr[2021];
return 0;
}
时间显示
小蓝要和朋友合作开发一个时间显示的网站。在服务器上,朋友已经获取
了当前的时间,用一个整数表示,值为从 1970 年 1 月 1 日 00:00:00 到当前时
刻经过的毫秒数。
现在,小蓝要在客户端显示出这个时间。小蓝不用显示出年月日,只需要
显示出时分秒即可,毫秒也不用显示,直接舍去即可。
给定一个用整数表示的时间,请将这个时间对应的时分秒输出。
【输入格式】
输入一行包含一个整数,表示时间。
【输出格式】
输出时分秒表示的当前时间,格式形如 HH:MM:SS,其中 HH 表示时,值
为 0 到 23,MM 表示分,值为 0 到 59,SS 表示秒,值为 0 到 59。时、分、秒
不足两位时补前导 0。
【样例输入 1】
46800999
【样例输出 1】
13:00:00
【样例输入 2】
1618708103123
【样例输出 2】
01:08:23
省略毫秒直接除1000,对60取余为秒,除以60后对60取余为分钟,除以60后对24取余为时;
#include<bits/stdc++.h>
using namespace std;
int main()
{
long long num;
cin >> num;
num /= 1000;
int s, m, h;
s = num%60;
num /= 60;
m = num%60;
num /= 60;
h = num%24;
printf("%02d:%02d:%02d", h, m, s);
return 0;
}
砝码称重
你有一架天平和 N 个砝码,这 N 个砝码重量依次是 W1, W2, · · · , WN。
请你计算一共可以称出多少种不同的重量?
注意砝码可以放在天平两边。
【输入格式】
输入的第一行包含一个整数 N。
第二行包含 N 个整数:W1, W2, W3, · · · , WN。
【输出格式】
输出一个整数代表答案。
【样例输入】
3
1 4 6
【样例输出】
10
【样例说明】
能称出的 10 种重量是:1、2、3、4、5、6、7、9、10、11。
1 = 1;
2 = 6 − 4 (天平一边放 6,另一边放 4);
3 = 4 − 1;
4 = 4;
5 = 6 − 1;
6 = 6;
7 = 1 + 6;
9 = 4 + 6 − 1;
10 = 4 + 6;
11 = 1 + 4 + 6。
#include<bits/stdc++.h>
using namespace std;
const int b = 100010;
bool dp[107][200020] = {0}; //判断某个数是否可以存在
int main()
{
int n;
cin >> n;
int sum = 0;
int arr[107] = {0};//存储第i个数
int res = 0;
for(int i = 1; i <= n; i++)
{
cin >> arr[i];
sum += arr[i];sum为砝码的总重量
}
dp[0][b] = true; //没有砝码的时候重量为0
for(int i = 1; i <= n; i++)
{
for(int j = -sum; j <= sum; j++)
{
dp[i][j+b] = dp[i-1][j+b];
if(j - arr[i] >= -sum) //如果j - arr[i]大于最小值
{
dp[i][j+b] |= dp[i-1][j-arr[i]+b]; //如果j-arr[i]的重量存在的话j也可以存在
}
if(j + arr[i] <= sum) //如果j + arr[i]小于最大值
{
dp[i][j+b] |= dp[i-1][j+arr[i]+b]; //如果j+arr[i]的重量存在的话j也可以存在
}
}
}
for(int i = 1; i <= sum; i++)
{
if(dp[n][i+b])
{
res++; //如果i的重量存在,情况数+1
}
}
cout << res << endl; //输出总情况数
return 0;
}
杨辉三角形
下面的图形是著名的杨辉三角形:
如果我们按从上到下、从左到右的顺序把所有数排成一列,可以得到如下
数列:
给定一个正整数 N,请你输出数列中第一次出现 N 是在第几个数?
【输入格式】
输入一个整数 N。
【输出格式】
输出一个整数代表答案。
【样例输入】
6
【样例输出】
13
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int n;
ll c(int a, int b) //求组合数
{
ll res = 1;
for(int i = a, j = 1; j <= b; i--, j++)
{
res = res * i / j;
if(res > n)
{
return res;
}
}
return res;
}
bool check(int k) 二分判断n是否存在在某一行第k个数
{
ll l = k*2;
ll r = n;
while(l < r)
{
ll mid = l + r >> 1;
if(c(mid, k) >= n)
{
r = mid;
}
else
{
l = mid+1;
}
}
if(c(r, k) != n)
{
return false;
}
cout << r*(r+1)/2+k+1 << endl; //存在的话输出结果
return true;
}
int main()
{
cin >> n;
if(n == 1) //特判n == 1的时候(按上面的数据来会等于3)
{
cout << 1;
}
else
for(int k = 16; ; k--) //c(16, 32)已经可以超过数据最大值
{
if(check(k))
{
break;
}
}
return 0;
}
双向排序
给定序列 (a1, a2, · · · , an) = (1, 2, · · · , n),即 ai = i。
小蓝将对这个序列进行 m 次操作,每次可能是将 a1, a2, · · · , aqi 降序排列,
或者将 aqi , aqi+1, · · · , an 升序排列。
请求出操作完成后的序列。
【输入格式】
输入的第一行包含两个整数 n, m,分别表示序列的长度和操作次数。
接下来 m 行描述对序列的操作,其中第 i 行包含两个整数 pi, qi 表示操作
类型和参数。当 pi = 0 时,表示将 a1, a2, · · · , aqi 降序排列;当 pi = 1 时,表示
将 aqi , aqi+1, · · · , an 升序排列。
【输出格式】
输出一行,包含 n 个整数,相邻的整数之间使用一个空格分隔,表示操作
完成后的序列。
【样例输入】
3 3
0 3
1 2
0 2
【样例输出】
3 1 2
当有连续相同操作时,取范围最大的那个
当此次有效操作范围大于上次有效操作范围时,上两次有效操作无效
对初始数组进行升序操作无效
#include<bits/stdc++.h>
using namespace std;
int arr[100007][2];
int ans[100007] = {0};
int main()
{
int top = 0;
int m, n;
cin >> m >> n;
while(n--)
{
int p, q;
cin >> p >> q;
if(!p) //p为0的情况
{
while(top && arr[top][0] == 0) //如果前面有连续的p为0的情况
{
q = max(arr[top--][1], q); //算出范围最大的那个
}
while(top >= 2 && arr[top-1][1] <= q) //如果比上一次的情况为0的范围要大
{
top -= 2; //删除上两次操作
}
top++;
arr[top][0] = 0;
arr[top][1] = q; //将操作和情况加入数组
}
else if(top) //p为1时对初始数组的操作无意义
{
while(top && arr[top][0] == 1) //如果前面有连续的p为1的情况
{
q = min(arr[top--][1], q); //算出范围最大的那个
}
while(top >= 2 && arr[top-1][1] >= q) //如果比上一次的情况为1的范围要大
{
top -= 2; //删除上两次操作
}
top++;
arr[top][0] = 1;
arr[top][1] = q; //将操作和情况加入数组
}
}
int k = m, l = 1, r = m;
for(int i = 1; i <= top; i++)
{
if(arr[i][0] == 0)
{
while(r > arr[i][1] && l <= r)
{
ans[r] = k; //数组右侧为升序排序
k--;
r--;
}
}
else
{
while(l < arr[i][1] && l <= r)
{
ans[l] = k; //数组左侧为降序排序
k--;
l++;
}
}
if(l > r)
{
break;
}
}
if(top%2) //有效操作次数为奇数次(最后一次操作为0)
{
while(l <= r)
{
ans[l] = k; //中间部分降序排序
l++;
k--;
}
}
else
{
while(l <= r)
{
ans[r] = k; //中间部分升序排序
r--;
k--;
}
}
for(int i = 1; i <= m; i++)
{
cout << ans[i] << " "; //输出结果
}
return 0;
}