贪心学习
贪心题目感悟和题解一、坐标系问题
题目一
给定 N 个闭区间 [ai,bi],请你在数轴上选择尽量少的点,使得每个区间内至少包含一个选出的点。
输出选择的点的最小数量。
位于区间端点上的点也算作区间内。
输入格式
第一行包含整数 N,表示区间数。
接下来 N 行,每行包含两个整数 ai,bi,表示一个区间的两个端点。
输出格式
输出一个整数,表示所需的点的最小数量。
输入样例:
3
-1 1
2 4
3 5
输出样例:
2
贪心方案:
1、将n个区间按照左端点进行从小到大的排序
2、只会对n个排过序的区间进行遍历
3、如果第k个区间的右端点大于k+1的左端点则第k个区间中包含第k+1个区间的点
4、如果第k个区间的右端点小于k+1的左端点则第k个区间中不包含第k+1个区间的点则需要选中这个区间
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N =100010,INF = -2e9;
int n;
struct Range
{
int l,r;
bool operator < (const Range &W)const
{
return r < W.r ; // 按照l排序
}
}range[N];
int main()
{
scanf("%d", &n);
for(int i = 0 ;i<n; i ++)
{
int l,r;
scanf("%d%d",&l,&r);
range[i] = {l,r};
}
sort(range,range+n);
int res = 0;
int right = INF;
for(int i = 0;i<n;i++)
if(range[i].l >right)
{
right = range[i].r;
res++;
}
printf("%d\n",res);
return 0;
}
题目二
给定 N 个闭区间 [ai,bi],请你在数轴上选择若干区间,使得选中的区间之间互不相交(包括端点)。
输出可选取区间的最大数量。
输入格式
第一行包含整数 N,表示区间数。
接下来 N 行,每行包含两个整数 ai,bi,表示一个区间的两个端点。
输出格式
输出一个整数,表示可选取区间的最大数量。
输入样例:
3
-1 1
2 4
3 5
输出样例:
2
解析:这个题目和题目一的思路相似都是选中某一个端点作为区间排序的一局,之后利用另一个端点解出题目
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 100010,INF=-2e9;
int n;
struct Range
{
int l,r;
bool operator < (const Range &W)const
{
return r < W.r;
}
}range[N];
int main()
{
scanf("%d", &n);
for (int i = 0; i < n; i ++ )
{
int r,l;
scanf("%d%d",&l,&r);
range[i] = {l,r};
}
sort(range,range+n);
int right =INF, res = 0;
for (int i = 0; i < n; i ++ )
if(range[i].l > right)
{
res++;
right = range[i].r;
}
printf("%d\n",res);
return 0;
}
题目三
给定 N 个闭区间 [ai,bi],请你将这些区间分成若干组,使得每组内部的区间两两之间(包括端点)没有交集,并使得组数尽可能小。
输入格式
第一行包含整数 N,表示区间数。
接下来 N 行,每行包含两个整数 ai,bi,表示一个区间的两个端点。
输出格式
输出一个整数,表示最小组数。
输入样例:
3
-1 1
2 4
3 5
输出样例:
2
解析:
1、将所有区间按左端点从小到大排序
2、 从前往后处理每个区间
3、 放入某个族中满足L[i] >Max 之和放入
4、 如果没有满足的创建一个组中
#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
#include <vector>
using namespace std;
const int N = 100010,INF=-2e9;
int n;
struct Range
{
int l,r;
bool operator < (const Range &W)const
{
return l < W.l;
}
}range[N];
int main()
{
scanf("%d", &n);
for (int i = 0; i < n; i ++ )
{
int r,l;
scanf("%d%d",&l,&r);
range[i] = {l,r};
}
sort(range,range+n);
priority_queue<int,vector<int>,greater<int> >heap;
for (int i = 0; i < n; i ++ )
{
auto r = range[i];
if(heap.empty() || heap.top() >= r.l) heap.push(r.r);
else
{
heap.pop();
heap .push(r.r);
}
}
printf("%d\n",heap.size());
return 0;
}
题目四
给定 N 个闭区间 [ai,bi] 以及一个线段区间 [s,t],请你选择尽量少的区间,将指定线段区间完全覆盖。
输出最少区间数,如果无法完全覆盖则输出 −1。
输入格式
第一行包含两个整数 s 和 t,表示给定线段区间的两个端点。
第二行包含整数 N,表示给定区间数。
接下来 N 行,每行包含两个整数 ai,bi,表示一个区间的两个端点。
输出格式
输出一个整数,表示所需最少区间数。
如果无解,则输出 −1。
输入样例:
1 5
3
-1 3
2 4
3 5
输出样例:
2
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 100010;
int s ,t , n;
struct Range
{
int l,r;
bool operator < (const Range &W)const
{
return l < W.l;
}
}range[N];
void out()
{
for (int i = 0; i < n; i ++ )
cout << range[i].l << " " << range[i].r << endl;
}
int main()
{
scanf("%d%d",&s,&t);
scanf("%d", &n);
for (int i = 0; i < n; i ++ )
{
int l,r;
scanf("%d%d",&l,&r);
range[i] = {l,r};
}
sort(range,range+n);
int res = 0,s1=s;
for (int i = 0; i < n; i ++ )
if(range[i].l > s1) break;
else
{
if(range[i].l > s || s1 >= t)
{
res++;
s = s1;
if (s1 >=t) break;
}
s1 = max(range[i].r,s1);
if(s1 >= t)
{
s = s1;
res++;
break;
}
}
if(s>=t) printf("%d\n",res);
else puts("-1");
return 0;
}
二、离散数学中的证明
题目一
在一个果园里,达达已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。
达达决定把所有的果子合成一堆。
每一次合并,达达可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。
可以看出,所有的果子经过 n−1 次合并之后,就只剩下一堆了。
达达在合并果子时总共消耗的体力等于每次合并所耗体力之和。
因为还要花大力气把这些果子搬回家,所以达达在合并果子时要尽可能地节省体力。
假定每个果子重量都为 1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使达达耗费的体力最少,并输出这个最小的体力耗费值。
例如有 3 种果子,数目依次为 1,2,9。
可以先将 1、2 堆合并,新堆数目为 3,耗费体力为 3。
接着,将新堆与原先的第三堆合并,又得到新的堆,数目为 12,耗费体力为 12。
所以达达总共耗费体力=3+12=15。
可以证明 15 为最小的体力耗费值。
输入格式
输入包括两行,第一行是一个整数 n,表示果子的种类数。
第二行包含 n 个整数,用空格分隔,第 i 个整数 ai 是第 i 种果子的数目。
输出格式
输出包括一行,这一行只包含一个整数,也就是最小的体力耗费值。
输入数据保证这个值小于 231。
输入样例:
3
1 2 9
输出样例:
15
解析:如果大家学过离散数学就会发现这个和Huffman树的证明方式一样
贪心思路:将N个数中最小的俩个数相加之和变成N-1个数,之后依次往返最后变成一个数。
#include <iostream>
#include <cstring>
#include <algorithm>
#include <vector>
#include<queue>
using namespace std;
const int N = 10010;
int a[N],n,idx;
int main()
{
scanf("%d", &n);
priority_queue<int,vector<int>,greater<int>> heap;// 小根堆
while(n--)
{
int g;
scanf("%d",&g);
heap.push(g);
}
int res = 0;
while(heap.size() != 1)
{
int t = heap.top(); heap.pop();
t+=heap.top();heap.pop();
res+=t;
heap.push(t);
}
printf("%d\n",res);
return 0;
}
总结
贪心的问题做的时候感觉有些不是很有把握,在不断的想出局部最优的写法或者使用以往学习的理论知识直接使用后者还很舒服,前者在做题的时候都是在尝试。证明和自己想出大体模型 ;这块还需要学习
544

被折叠的 条评论
为什么被折叠?



