关联信息融合的知识图补全方法

       

目前,一些基于知识表示学习的补全方法没有充分考虑多步关系路径中各关系与直接关系之间的关联信息,以及头尾实体类型与直接关系之间的关联信息。 本论文对这些关联信息进行提取和利用,并提出了知识图补全的AiTransE模型。该模型利用首尾实体之间的多步关系路径中各关系的出现频率来计算与直接关系的关联程度,并利用首尾实体类型和直接关系类型进行匹配来获得它们之间的关联程度。最后,对两个关联度进行线性加权合并后引入目标函数,使模型对不同三元组给予不同的关注,提高模型知识表示学习性能。

AiTransE模型的5个部分:

       (1)过滤KG中三元组中两个实体之间的路径。 (2)提取多步路径中各关系与直接关系之间的关联信息。(3)将头尾实体类型与直接关系进行匹配,得到头尾实体与直接关系关联度的评价。(4)对两种关联信息进行整合,得到三元组的关联得分。 (5)在TransE模型的基础上,加入关联评分,得到AiTransE模型。

(1)过滤KG中三元组中两个实体之间的路径

       参考路径约束资源分配算法PCRA的思

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值