目前,一些基于知识表示学习的补全方法没有充分考虑多步关系路径中各关系与直接关系之间的关联信息,以及头尾实体类型与直接关系之间的关联信息。 本论文对这些关联信息进行提取和利用,并提出了知识图补全的AiTransE模型。该模型利用首尾实体之间的多步关系路径中各关系的出现频率来计算与直接关系的关联程度,并利用首尾实体类型和直接关系类型进行匹配来获得它们之间的关联程度。最后,对两个关联度进行线性加权合并后引入目标函数,使模型对不同三元组给予不同的关注,提高模型知识表示学习性能。
AiTransE模型的5个部分:
(1)过滤KG中三元组中两个实体之间的路径。 (2)提取多步路径中各关系与直接关系之间的关联信息。(3)将头尾实体类型与直接关系进行匹配,得到头尾实体与直接关系关联度的评价。(4)对两种关联信息进行整合,得到三元组的关联得分。 (5)在TransE模型的基础上,加入关联评分,得到AiTransE模型。
(1)过滤KG中三元组中两个实体之间的路径
参考路径约束资源分配算法PCRA的思