八大算法思想———分治算法

各个击破的分治思想

定义:采用各个击破的方法,将一个规模为N的问题分解为K个规模较小的子问题

要求:每个小问题相互独立且与原问题性质相同

步骤:

1,分解,将要解决的问题划分为若干个规模较小的同类的问题
2,求解,将子问题进行用较简单的方法进行求解
3,合并,按照原问题要求,价格子问题解逐层合并

实战演练

public class TheCalanderOfGame {

        //分治思想
        //假设有8个队伍比赛,每个队伍每天只比一次,且每个队都要和其他队伍比赛一次,比赛n-1天
        //则打印出比赛安排
        //算法思想:n个队伍比赛由n/2个队伍决定,将这种一分为二的方法依次进行,直到只剩下2个队伍为止
        static int length=64;
        static Integer[][] a=new Integer[length+1][length+1];
        public void gamecal(int k,int n){//第k个编号,共n个队伍
            if (n==2){
                a[k][1]=k;
                a[k][2]=k+1;
                a[k+1][1]=k+1;
                a[k+1][2]=k;
            }else{
                gamecal(k,n/2);
                gamecal(k+n/2,n/2);
                for(int i=k;i<k+n/2;i++){//填充右上角
                    for (int j=n/2+1;j<=n;j++){
                        a[i][j]=a[i+n/2][j-n/2];
                    }
                }
                for (int i=n/2+k;i<n+k;i++){//填充右下角
                    for (int j=n/2+1;j<=n;j++){
                        a[i][j]=a[i-n/2][j-n/2];
                    }
                }
            }
        }
        public static void main(String[] args) {

            int n=0;
            Scanner s=new Scanner(System.in);
            System.out.print("请输入队伍数量:");
            while (true){
                Integer m=s.nextInt();
                if (m/2.0==m/2 && m<=64){
                    n=m;
                    break;
                }else {
                    System.out.println("输入有误!!!请输入数不超过64,且为偶数!");
                    continue;
                }
            }


            TheCalanderOfGame tcog=new TheCalanderOfGame();

            tcog.gamecal(1,n);
            String str="";
            for (int i=1;i<=n;i++){
                if (i==1){
                    System.out.print("编号"+"  ");
                }

                str="第"+i+"天";
                System.out.print(str+"  ");
            }
            System.out.println("\n");
            for (int i=1;i<=n;i++){
                for (int j=1;j<=n;j++){
                    System.out.print(a[i][j]+"  ");

                }
                System.out.print("\n");
            }


        }
    }

结果:输入 8
a

总结分治问题能解决的问题:
1,(解小性)当所有问题规模缩小到一定程度就容易解决问题,大多数都满足
2,(分同性)分解为若干个规模小的相同的问题,大多数问题都满足,且反应了递归的应用
3,(合并性)子问题解可以合并为该问题的解,这是决定能否利用分治的关键,若只满足1,2可以考虑贪婪或动态迭代
4,(独立性)子问题都是独立的,不涉及公共问题,若涉及,则考虑动态迭代更好

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值