杰米斯·哈萨比斯:从国际象棋神童 到 DeepMind掌舵人

名人说:路漫漫其修远兮,吾将上下而求索。—— 屈原《离骚》
创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊)

杰米斯·哈萨比斯:从国际象棋神童到DeepMind掌舵人

一、引言

在人工智能领域,有一些名字注定被载入史册,而杰米斯·哈萨比斯Demis Hassabis)无疑是其中最耀眼的一颗星。从13岁成为国际象棋大师,到17岁设计百万销量的电子游戏,从神经科学学者到创立改变世界的AI公司DeepMind,哈萨比斯的传奇人生轨迹印证了一个事实:真正的天才往往能够跨越多个领域并在每一个领域都取得卓越成就。

在这里插入图片描述
图片:杰米斯·哈萨比斯

2024年10月9日,瑞典皇家科学院宣布将2024年诺贝尔化学奖授予哈萨比斯和他的同事约翰·朱姆珀(John Jumper),以表彰他们开发的AlphaFold系统在蛋白质结构预测领域的革命性贡献。这是继AlphaGo震惊世界之后,DeepMind在科学领域取得的又一重大突破,也是人工智能技术首次被诺贝尔奖认可的里程碑事件。

在这里插入图片描述
图片:2024年诺贝尔化学奖得主

本文将带您走进哈萨比斯的传奇人生,探索这位AI先驱如何从一个爱下棋的少年,成长为改变人类科学进程的创新者。他的故事不仅是一部个人成长史,更是AI技术从实验室走向改变世界的缩影。

二、早年生活:国际象棋神童与游戏天才

1. 成长背景

杰米斯·哈萨比斯1976年7月27日出生在英国伦敦,父亲是希腊裔塞浦路斯人,母亲是华裔新加坡人。这种多元文化的家庭背景为他日后的全球视野打下了基础。哈萨比斯从小就展现出非凡的智力,尤其在逻辑思维和策略游戏方面表现突出。

4岁时,哈萨比斯开始学习国际象棋。有趣的是,他甚至不记得自己是如何学会下棋的。据说,他看到父亲和叔叔在下棋后要求尝试,几周后就能击败这两位业余棋手。这种对棋类游戏的天赋和热情贯穿了他的整个童年和青少年时期。

在这里插入图片描述
图片:国际象棋

2. 国际象棋大师之路

哈萨比斯在国际象棋领域的才华很快显现出来。在13岁时,他就达到了国际象棋大师水平,拥有2300的等级分,这使他成为当时世界上U14(14岁以下)年龄组第二高分的棋手,仅次于传奇的尤迪特·波尔加(Judit Polgar)。他曾多次代表英格兰队参加国际青少年国际象棋比赛。

哈萨比斯的棋艺不仅限于国际象棋。他是日本将棋和扑克的高水平选手,并且在伦敦思维体育奥林匹克运动会上创下了五次获得全能世界冠军(Pentamind World Championship)的纪录,这一成就至今无人能破。

3. 编程启蒙与游戏设计

除了下棋,年轻的哈萨比斯也对计算机和编程产生了浓厚兴趣。8岁时,他用一次象棋比赛的奖金购买了自己的第一台电脑——一台ZX Spectrum。他开始自学编程,并创建了自己的国际象棋和奥赛罗(黑白棋)程序,这是他在AI领域的最早尝试。

16岁时,哈萨比斯应剑桥大学的要求提前两年完成了A-Level考试,但由于年龄原因,大学建议他先休学一年。在这段时间里,他参加并赢得了"赢得Bullfrog工作机会"竞赛,加入了著名的电子游戏公司Bullfrog Productions。

在这里插入图片描述
图片:Bullfrog Productions

在Bullfrog,哈萨比斯参与了《辛迪加》(Syndicate)游戏的关卡设计。更令人印象深刻的是,年仅17岁的他与游戏设计师彼得·莫利纽克斯(Peter Molyneux)共同设计并担任了《主题公园》(Theme Park)的首席程序员。这款游戏最终销量达数百万份,并获得了行业著名的金摇杆奖(Golden Joystick Award)。

三、学术与职业发展:从游戏到神经科学

1. 大学教育与职业起步

完成Bullfrog的工作后哈萨比斯前往剑桥大学皇后学院(Queens’ College)攻读计算机科学专业1997年,他以计算机科学三项全能(Computer Science Tripos)的双一等荣誉学位毕业,展现了他在学术领域的卓越能力。

毕业后,哈萨比斯短暂加入了由他的老同事彼得·莫利纽克斯新成立的Lionhead Studios,担任《黑与白》(Black & White)游戏的首席AI程序员。这款游戏以其创新的AI系统而闻名,玩家可以训练一个会学习的生物,展现了哈萨比斯对AI的早期探索。

在这里插入图片描述
图片:Lionhead Studios

2. Elixir Studios的创业之路

1998年,22岁的哈萨比斯创立了自己的游戏开发公司Elixir Studios。作为一家独立游戏开发商,Elixir Studios成功地与Eidos Interactive、Vivendi Universal和微软等全球出版商签订了发行协议。

在这里插入图片描述
图片:Elixir Studios

在Elixir,哈萨比斯担任执行设计师,推出了两款获得BAFTA提名的游戏:政治模拟游戏《革命共和国》(Republic: The Revolution)和邪恶天才模拟游戏《邪恶天才》(Evil Genius)。这些游戏以其复杂的AI系统和创新的游戏玩法受到了玩家的喜爱。

然而,游戏行业的商业现实让哈萨比斯感到挫折。他第一款游戏《革命共和国》因其极为宏大的范围多次推迟发布,最终不得不缩减原始设计。尽管《邪恶天才》取得了更好的成绩,但2005年,哈萨比斯决定关闭Elixir Studios,将知识产权和技术权利出售给了各种出版商。

他对PCGamesN表示:“我无法在游戏的幌子下进行任何有趣的AI研究”。这标志着他职业生涯的一个重要转折点:从游戏设计转向他一直热衷的AI研究。

3. 认知神经科学的学术追求

离开游戏行业后,哈萨比斯回归学术界,在伦敦大学学院(UCL)攻读认知神经科学博士学位。他选择这一领域是因为希望通过研究人脑的工作原理来为AI研究寻找灵感。正如他所说:“这是我的交叉点,在结束Elixir并售出所有知识产权和技术后,我回到UCL攻读关于想象力和记忆的博士学位。我真正在发现大脑如何完成这些任务”。

2009年哈萨比斯获得博士学位,其研究重点是自传体记忆和失忆症领域。他的一项开创性研究首次系统地证明,海马体受损的患者(已知会导致失忆)同样无法想象自己处于新环境中。这一发现表明了记忆和想象力功能的神经联系——两者都需要在大脑中构建场景的能力。

这项研究被《科学》(Science)杂志评为2007年十大科学突破之一,显示了哈萨比斯将不同学科知识融合的能力。随后,他继续在哈佛大学和麻省理工学院(MIT)进行博士后研究,并成为伦敦大学学院的亨利·韦尔科姆(Henry Wellcome)研究员。

四、DeepMind的创立与发展

1. 创业愿景与早期发展

多年来,哈萨比斯一直梦想着解决人类级别的人工智能问题2010年他与神经科学家沙恩·莱格(Shane Legg)和企业家穆斯塔法·苏莱曼(Mustafa Suleyman)共同创立了DeepMind。哈萨比斯与莱格在盖茨比计算神经科学单位(Gatsby Computational Neuroscience Unit)担任博士后期间相识,而他和苏莱曼则是通过家庭关系相识的朋友。

在这里插入图片描述
图片:DeepMind

DeepMind的使命简单而宏大:“解决智能问题,然后用智能解决其他所有问题”。更具体地说,DeepMind旨在将系统神经科学的见解与机器学习和计算硬件的新发展相结合,以开发越来越强大的通用学习算法,最终创建人工通用智能(AGI)。

创立初期,DeepMind专注于训练学习算法掌握游戏2013年12月,公司宣布取得了开创性的突破,训练了一种称为深度Q网络(Deep Q-Network,DQN)的算法,使其能够以超人水平玩转Atari游戏。这种算法可以直接从像素输入学习玩各种不同的游戏,展示了令人印象深刻的适应能力。

2. 被谷歌收购与业务扩展

DeepMind的突破性成果很快引起了科技巨头的注意。2014年1月谷歌以约5亿美元的价格收购了DeepMind,这是谷歌当时在欧洲最大的收购案。作为交易的一部分,哈萨比斯继续担任DeepMind的首席执行官,公司保持相对独立的运营。

被收购后,DeepMind的资源大幅增加,其研究范围也随之扩大。除了游戏AI,公司开始将其技术应用于更广泛的领域,包括医疗健康、能源效率和基础科学研究。

值得一提的是,DeepMind帮助谷歌将数据中心冷却系统的能耗减少了40%,这显示了AI在解决实际问题方面的潜力。公司还与英国国家医疗服务体系(NHS)和慕菲尔德眼科医院(Moorfields Eye Hospital)建立了合作伙伴关系,改善医疗服务并识别退行性眼部疾病的发生。

3. AlphaGo:改变游戏规则的突破

DeepMind真正引起全球关注的转折点是2016年3月的"谷歌DeepMind挑战赛"。在这场历史性的比赛中,DeepMind的AI程序AlphaGo与世界顶级围棋选手李世石进行了五局比赛。

在这里插入图片描述
图片:AlphaGo与世界顶级围棋选手李世石 围棋对决

围棋长期以来被认为是AI的终极挑战。与国际象棋相比,围棋的复杂度高出许多个数量级,可能的棋盘配置多达10的170次方——比已知宇宙中的原子数量还要多。在AlphaGo之前,最强的围棋计算机程序只能达到业余段位水平,尽管研究人员已经努力了数十年。

比赛前,李世石预测他会"大获全胜"。然而,结果令世界震惊:AlphaGo以4:1的比分战胜了这位18次世界冠军得主。这一胜利被视为AI发展的历史性时刻,可与1997年深蓝战胜国际象棋大师加里·卡斯帕罗夫相提并论。

在这里插入图片描述

更令人印象深刻的是,AlphaGo在比赛中下出了几步创新性的制胜棋步。在第二局中,它下出了"第37手"——这一着法出现的概率仅为万分之一。这一关键且创新的一步帮助AlphaGo赢得了比赛,颠覆了数百年的传统智慧。

为表彰这一成就,韩国棋院授予AlphaGo最高围棋大师级别——“荣誉9段”。这一胜利被《科学》杂志选为2016年度科学突破的亚军。

五、从游戏到科学:AlphaFold的革命

1. 科学难题的AI解决方案

在AlphaGo取得成功后,哈萨比斯并未满足于此。他意识到,DeepMind的技术不仅可以应用于游戏,还可以解决长期困扰科学界的重大问题。正如他在AlphaGo与李世石的比赛后台所说:“现在是时候了”。

2016年,DeepMind将目光转向蛋白质折叠问题——一个困扰科学家们50年的挑战。蛋白质是生命的基石,它们的三维结构决定了它们在体内的行为和相互作用方式。然而,大量重要蛋白质的结构至今仍未被生物学家所知。

在这里插入图片描述

使用AI准确预测这些结构将提供解决疾病的工具,从癌症到新冠肺炎。蛋白质是许多药物的主要靶点,也是新疗法和疫苗的关键成分。快速揭示它们的结构将加速新疗法和疫苗的开发。

2. AlphaFold的突破与成就

2018年12月,DeepMind的AlphaFold工具在第13届蛋白质结构预测关键评估(CASP13)比赛中获胜,成功预测了43个蛋白质中25个的最准确结构。对此,哈萨比斯向《卫报》表示:“这是一个灯塔项目,是我们在人员和资源方面对一个根本性的、非常重要的现实世界科学问题的第一次重大投资”。

但真正的突破来自2020年11月。在CASP14比赛中,AlphaFold 2(一个新版本的系统)取得了令人瞩目的成果。它在具有挑战性的自由建模类别中的蛋白质目标上达到了87.0的中位全局距离测试(GDT)分数,远高于2018年同样结果的不到60分,整体误差小于原子宽度(<1埃),使其能够与实验方法相媲美。

在这里插入图片描述
图片:AlphaFold 2

这一成就导致CASP的组织者宣布这个问题本质上已经被解决。DeepMind在接下来的一年里使用AlphaFold2对已知的全部2亿种蛋白质进行了折叠,并通过与欧洲分子生物学实验室-欧洲生物信息学研究所(EMBL-EBI)合作开发的AlphaFold蛋白质结构数据库,向任何人开放并免费提供了这个系统和这些结构。

3. 科学界的认可与荣誉

AlphaFold的成就为哈萨比斯和DeepMind赢得了科学界的最高荣誉。2022年,哈萨比斯因开发AlphaFold而获得了突破奖生命科学奖(Breakthrough Prize in Life Sciences)。2023年,他又获得了拉斯克奖(Lasker Award),这被视为诺贝尔奖的前奏

2024年3月,哈萨比斯因对AI的贡献而被授予英国爵士称号。最终,在2024年10月9日,瑞典皇家科学院宣布将2024年诺贝尔化学奖授予哈萨比斯和约翰·朱姆珀,以表彰他们在蛋白质结构预测方面的开创性工作。大卫·贝克(David Baker)也因其在计算蛋白质设计领域的工作获得了一半的奖金。

这是AI研究首次获得诺贝尔奖的认可,标志着AI已经从实验室走向解决人类最复杂问题的实用工具。诺贝尔化学委员会主席海纳·林克(Heiner Linke)在一份声明中表示:“今年被认可的发现之一关于构建壮观的蛋白质。另一个是关于实现一个50年的梦想:从其氨基酸序列预测蛋白质结构。这两个发现都开启了广阔的可能性”。

六、领导风格与AI哲学

1. 跨学科思维的力量

哈萨比斯的成功很大程度上归功于他将不同领域的知识和经验无缝融合的能力。他的职业生涯跨越了游戏设计、神经科学和人工智能,每一步都为下一步奠定了基础。

在谈到自己的跨学科背景时,哈萨比斯表示:“尽管我在Bullfrog、Lionhead和Elixir制作游戏,但我的目标始终是最终专注于AI。游戏是我进入这一领域的途径”。这种融合多领域知识的能力让他能够从独特的角度思考AI问题。

他的神经科学研究特别影响了DeepMind的方向。通过研究人脑如何处理记忆和想象,哈萨比斯为AI系统设计提供了新的思路。他表示:“所有的神经科学都在为这里的算法创意提供灵感——我总是利用我所有的经验来做我现在正在做的事情”。

2. 对AI未来的愿景

作为AI领域的先驱,哈萨比斯对人工智能的未来持谨慎乐观的态度。他预测AI将成为"人类有史以来最有益的技术之一",但同时也警告AI如果被滥用可能带来的潜在危险和风险。

哈萨比斯一直是进一步开展AI安全研究的强烈倡导者。2023年,他签署了一份声明,认为"减轻AI导致灭绝的风险应该与大流行和核战争等其他社会规模风险一起成为全球优先事项"。

然而,与一些同行不同,哈萨比斯认为暂停AI进展几乎不可能在全球范围内执行,并且潜在的益处(例如,在医疗保健和气候变化等领域)可能会超过风险。他强调了负责任的AI开发和使用的重要性,而不是完全停止研究

在诺贝尔奖宣布后,哈萨比斯强调:“我致力于推进AI,因为它具有改善数十亿人生活的无与伦比的潜力。AlphaFold已经被超过200万研究人员用于推进关键工作,从酶设计到药物发现。我希望我们将把AlphaFold视为AI加速科学发现的令人难以置信的潜力的第一个证明点”。

3. 管理风格与DeepMind文化

作为DeepMind的首席执行官,哈萨比斯培养了一种独特的组织文化,将学术研究与商业应用相结合。他招募了来自不同背景的顶尖人才,包括神经科学家、机器学习专家、工程师和游戏开发者。

DeepMind的文化强调长期思考和解决根本性问题,而不仅仅是追求短期商业利益。公司的使命——"解决智能问题,然后用智能解决其他所有问题"——反映了哈萨比斯对AI潜力的远见。

尽管DeepMind现在是谷歌(现为Alphabet)旗下的公司,但哈萨比斯确保它保持了相对的独立性和学术自由。这种平衡使公司能够追求雄心勃勃的研究项目,同时将其技术应用于谷歌的产品和服务。

2022年4月,哈萨比斯宣布DeepMind将与谷歌大脑团队合并,成为Google DeepMind,“加速进步,迎接AI帮助解决人类面临的最大挑战的世界”。这一合并巩固了DeepMind作为全球领先AI研究和应用组织的地位。

七、个人生活与影响力

1. 家庭与兴趣

尽管工作繁忙,哈萨比斯仍然保持着与家人在一起的时间。他与意大利分子生物学家特蕾莎·尼科利(Dr. Teresa Niccoli)博士结婚,育有两个儿子。一家人居住在伦敦北部。

除了工作,哈萨比斯仍然是一位热情的游戏玩家和体育爱好者。他是利物浦足球俱乐部的终身球迷,并继续对各种策略游戏保持兴趣。他的多元兴趣反映了他整合不同领域思想的能力,这也是他在AI研究中的突出特点。

2. 对科学和技术的持久影响

哈萨比斯的工作已经对科学和技术产生了深远的影响。AlphaGo不仅改变了围棋世界,还启发了新一代的AI系统。正如DeepMind所说:“它是确凿的证据,证明底层神经网络可以应用于复杂领域,而强化学习的使用表明机器可以通过简单的试错来自己学习解决难以置信的复杂问题”。

同样,AlphaFold正在彻底改变生物学和药物开发领域。研究人员利用AlphaFold的蛋白质结构预测来加速新治疗方法的开发,从疟疾到抗生素耐药性再到塑料降解酶。据报道,AlphaFold 2的论文是有史以来被引用最多的论文之一。

哈萨比斯的跨学科方法也影响了AI研究的方向。通过将神经科学见解与机器学习相结合,他帮助开创了一种更生物学启发的AI方法,可能最终导致更通用、更灵活的系统。

3. 对未来一代的启示

哈萨比斯的职业生涯为年轻人提供了几个重要启示。首先,他的故事表明深度专业知识和跨学科思维的结合可以导致突破性创新。从国际象棋到游戏设计再到神经科学,哈萨比斯的每一步都为他在AI领域的成功奠定了基础。

其次,他的职业道路强调了追随个人激情和长期愿景的重要性,即使这意味着改变方向。从关闭他成功的游戏公司到回归学术界,哈萨比斯始终将对真正理解智能的追求放在首位。

最后,他对AI的负责任发展和对科学挑战的应用的承诺展示了技术如何成为解决人类最紧迫问题的力量。正如他所说:“我希望我们将把AlphaFold视为AI加速科学发现的令人难以置信的潜力的第一个证明点”。

八、结语

从伦敦街头的年轻国际象棋选手到诺贝尔奖获得者,杰米斯·哈萨比斯的旅程是天赋、毅力和跨学科思维相结合的见证。他不仅在多个领域取得了卓越成就——国际象棋大师、游戏设计师、神经科学家和AI先驱——还将这些领域的见解融合,创造了真正改变世界的技术。

DeepMind的成就,从AlphaGo到AlphaFold,展示了AI不仅可以掌握复杂的游戏,还可以解决困扰科学家数十年的问题。这些突破为AI的未来开辟了新的可能性领域,从医疗保健到环境可持续性,再到科学发现的基本方式。

在这里插入图片描述

获得2024年诺贝尔化学奖是对哈萨比斯和他的团队工作的重要认可。它标志着AI已经成为科学探索的必不可少的工具,能够加速发现并帮助解决人类面临的一些最紧迫挑战。

哈萨比斯的故事提醒我们,真正的创新往往发生在不同领域的交叉点。通过将游戏的创造力、神经科学的洞察力和计算机科学的力量结合起来,他不仅改变了AI的发展轨迹,还展示了技术如何成为造福人类的强大力量。

随着我们进入AI发展的新时代,哈萨比斯的远见——负责任地发展人工智能以解决人类最紧迫的问题——将继续引导这一领域的发展,为科学进步和人类福祉创造新的可能性。

九、参考资料

  1. Demis Hassabis - Wikipedia
  2. Academy of Achievement - Sir Demis Hassabis
  3. Google DeepMind - AlphaGo
  4. Google DeepMind - Demis Hassabis & John Jumper awarded Nobel Prize in Chemistry
  5. MIT Technology Review - This is the reason Demis Hassabis started DeepMind
  6. PCGamesN - A conversation with Demis Hassabis
  7. Britannica - Demis Hassabis Biography
  8. ChessBase - Demis Hassabis from DeepMind wins Nobel in Chemistry
  9. AlphaGo versus Lee Sedol - Wikipedia

本文是CSDN “计算机名人堂” 专栏的一部分,旨在向读者介绍对计算机科学和技术发展做出重要贡献的人物。如果您对本文有任何建议或反馈,欢迎在评论区留言

专栏✅:《计算机名人堂》,欢迎订阅催更,谢谢大家支持!
创作者:Code_流苏(CSDN)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Code_流苏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值