在目标检测任务中,高质量的训练数据是模型性能提升的关键。本文围绕
YOLOv
系列模型,系统性地研究了目标检测训练数据的构建方法,提出了一套从图像采集、标注、数据集划分到数据增强的一体化流程设计 。通过多源图像采集策略确保样本多样性,结合LabelImg
工具完成VOC
格式标注,并采用标准化方式将XML
标签转换为YOLOv
所需的TXT
格式。在数据集划分阶段,按照8:1:1
的比例将数据划分为训练集、验证集和测试集,以提高模型泛化能力。同时引入多种数据增强手段,包括Gamma
变换、滤波操作、缩放、翻转和任意角度旋转,进一步提升了模型对光照变化、尺度差异和目标方向变化的鲁棒性。实验表明,该数据构建方法不仅有效解决了小样本训练中的过拟合问题,还显著提高了模型在实际场景下的识别精度与稳定性,为YOLOv
系列模型的训练提供了可靠的数据支持。
1.🌟收集数据集:高质量图像样本获取与多源融合策略
构建目标检测模型训练数据的第一步是获取具有代表性的图像样本,确保模型在实际部署中具备良好的泛化能力。