皇后问题(C语言)

问题描述:

  1. 要在8*8的国际象棋棋盘中放置8个皇后,使任意两个皇后都不能互相吃掉;
  2. 国际象棋的规则是皇后能吃掉同一行、同一列、同一对角线的棋子;

解题思路:

该题运用到递归回溯,难点在于判断皇后的摆放是否符合题目要求并获取最多解法。

在这里插入图片描述

如图所示,在 row=0时,即从第一行第一列位置放置皇后时不受到其他皇后位置的影响(通过notDanger的判断),通过后再次调用EightQueen进行递归并使 row+1(皇后的放置推到下一行),以此类推,如果皇后的放置在该行内找到合适的位置则可以继续调用EightQueen(row+1)直至遍历八行后打印输出;否则将执行清零操作,并控制前一行皇后位置通过for循环列数+1,即调整前一位皇后位置,重复上述步骤。

运行结果如下:

在这里插入图片描述

代码如下:

# include<stdio.h>
# include<stdlib.h>
# include<string.h>

typedef int Status;
int count = 0;  // 解法 
int chess[8][8] = {
   0}; 

Status notDanger(int row, int col)  
{
   
	int i,j;
	// 判断列方向
	
<think>嗯,用户需要八皇后问题的C语言实现代码。我得先回忆一下八皇后问题的基本要求和解决思路。八皇后问题是要在8x8的棋盘上放置八个皇后,使得它们互不攻击,也就是不在同一行、同一列或同一斜线上。通常使用回溯算法来解决这个问题,因为回溯可以系统地尝试所有可能的放置方式,并在发现当前路径不可能正确时及时回溯,减少计算量。 首先,我需要确定如何表示棋盘。常见的做法是用一维数组,数组的索引代表行号,数组的值代表该行的皇后所在的列。例如,queen[i] = j表示第i行的皇后放在第j列。这种方法节省空间,并且检查冲突比较方便。 接下来,检查冲突的函数是关键。对于新放置的皇后,需要检查是否与之前放置的皇后在同一列或同一对角线上。同一列的判断很简单,只需要看queen[n]是否等于之前任何一行的值。对角线的话,如果两个皇后的行差等于列差的绝对值,说明他们在同一斜线上。例如,如果第i行和第n行的皇后,列差是abs(queen[i] - queen[n]),而行差是n - i,如果两者相等,就是冲突。 然后,回溯函数put(n)负责在第n行放置皇后。它会尝试将皇后放在第n行的每一列,对于每一列,先检查是否冲突,如果不冲突,就递归处理下一行n+1。如果n达到max-1,说明所有皇后都放置好了,就输出结果。 主函数main()调用put(0)开始从第0行处理,最后输出总共有多少种解法。 现在需要考虑用户提供的示例代码是否有问题。比如,检查冲突的函数返回1表示冲突,0表示不冲突,这样在条件判断时是否正确。在put函数中,当check(n)返回0时,说明没有冲突,可以继续递归。这一点需要确认是否正确。 另外,用户提供的引用中有两个来源,引用1是C语言版本的代码,引用2是问题描述。需要确保代码符合回溯算法的结构,并且正确实现了冲突检测。 可能用户还会关心代码的运行结果,比如总共有多少种解法,应该输出sum的值,而示例中的sum初始化为0,每次找到解法时sum自增,最后打印出来。正确的解法数目应该是92种,所以需要确认代码是否正确计算了这个数目。 此外,代码的可读性也很重要,比如变量命名是否清晰,注释是否到位。例如,queen数组、sum变量和函数show()、check()、put()的作用是否明确。 最后,生成相关问题时,需要考虑用户可能对回溯算法的具体实现、优化方法、不同语言的实现差异,或者八皇后问题的变种感兴趣。因此,相关问题可以包括优化策略、算法复杂度分析、不同数据结构的实现比较,以及扩展问题如N皇后问题等。</think>### 八皇后问题C语言实现代码解析 以下是八皇后问题的C语言实现代码,使用**回溯算法**逐行尝试皇后位置,并通过剪枝策略优化搜索过程: ```c #include <stdio.h> #include <stdlib.h> #define MAX 8 int queen[MAX], sum = 0; // queen数组存储每行皇后的列位置,sum记录解法总数 void show() { // 输出解法坐标 for (int i = 0; i < MAX; i++) { printf("(%d,%d) ", i, queen[i]); } printf("\n"); sum++; } int check(int n) { // 检查第n行皇后是否与之前冲突 for (int i = 0; i < n; i++) { if (queen[i] == queen[n] || abs(queen[i] - queen[n]) == n - i) { return 1; // 存在列冲突或对角线冲突 } } return 0; } void put(int n) { // 回溯函数,n表示当前处理的行 for (int i = 0; i < MAX; i++) { queen[n] = i; // 尝试在第n行第i列放置皇后 if (!check(n)) { // 检查是否冲突 if (n == MAX - 1) { show(); // 找到完整解法 } else { put(n + 1); // 继续处理下一行 } } } } int main() { put(0); // 从第0行开始递归 printf("Total solutions: %d\n", sum); return 0; } ``` #### 关键点说明 1. **数据结构**:使用一维数组$queen[MAX]$,索引表示行号,值表示列号 2. **冲突检测**: - 列冲突:$queen[i] == queen[n]$ - 对角线冲突:$|queen[i] - queen[n]| == n - i$[^2] 3. **回溯过程**:逐行放置皇后,当遇到冲突时立即回溯,时间复杂度为$O(n!)$ 4. **输出结果**:程序最终输出92种解法,符合数学验证结果[^1]
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值