第八章 涨指标的方法
1 概述
1.1 推荐系统的评价指标
-
日活用户数(DAU)和留存是最核心的指标
-
目前工业界最常用LT7和LT30衡量留存。
- 某用户今天( t 0 t_0 t0)登录APP,未来7天( t 0 − t 6 t_0-t_6 t0−t6)中4t天登录APP,那么该用户今天的LT7等于4
- LT增长通常意味着用户体验提升。(除非LT增长,DAU下降)
-
其他核心指标:用户使用时长、总阅读数/总点击数、总曝光数。
-
非核心指标:点击率、交互率等等。
-
对于UGC平台,发布量和发布渗透率也是核心指标。
1.2 涨指标的方法
- 改进召回模型,添加新的召回模型
- 改进粗排和精排模型
- 提升召回、粗排、精排中的多样性
- 特殊对待i虚拟用户、低活用户等特殊人群
- 利用关注、转发、评论这三种交互行为
2 召回
- 双塔模型和Item-to-Item(I2I)是最重要的两类召回模型,占据大部分召回配额
- 很多小众的模型,占据的配额很少。在召回总量不变的前提下,添加某些召回模型可以提升核心指标
- 通过添加优质内容池,可以提升核心指标
- 同一个模型可以用于多个内容池,得到多条召回通道
2.1 双塔模型
2.1.1 优化正样本、负样本
- 简单正样本:有点击的(用户,物品)二元组
- 简单负样本:随机组合的(用户,物品)二元组
- 困难负样本:排序靠后的(用户,物品)二元组
2.2.2 改进神经网络结构
- Baseline:用户塔和物品塔分别是全连接网络
- 改进:用深度交叉网络DCN代替全连接网络
- 改进:在用户塔中使用用户行为序列(last-n)
- 改进:使用多向量模型代替单向量模型(如标准的双塔模型,二分类任务)-> 用户塔输出多个向量,通过不同向量和物品塔输出的一个向量(一个是为了节省数据库的存储成本)的内积进行预估指标(类似排序中的多目标模型)
2.2.3 改进模型的训练方法
- Baseline:二分类,区分正、负样本
- 改进:结合二分类、batch内负采样(需要对热门物品做纠偏)
- 改进:利用自监督学习方法,让冷门物品的embedding学得更好
2.2 Item-to-Item
-
I2I基于相似物品做召回
-
最常见的用法师U2I2I
-
如何计算物品相似度?
- 方法一:ItemCF及其变体(线上同时使用多种I2I模型,各分配一定配额)
- 方法二:基于物品向量表征,计算向量相似度(双塔模型、图神经网络等等)
2.3 小众模型
2.3.1 类似I2I的模型
- U2U2I(推荐相似用户喜欢的物品)
- U2A2I(推荐用户喜欢作者的物品)
- U2A2A2I(推荐与用户喜欢作者类似的作者的物品)
2.3.2 更复杂的模型
- Path-based Deep Network(PDN)
- Deep Retrieval
- Sparse-Interest Network(SINE)
- Multi-task Multi-view Graph Representation Learning(M2GRL)
3 排序模型
3.1 精排模型的改进
3.1.1 基座
- 基座的输入包括离散特征和连续特征,输出一个向量,作为多目标预估的输入。
- 改进1:基座加宽加深,计算量更大,预测更准确。
- 改进2:做自动的特征交叉,比如bilinear和LHUC
- 改进3:特征工程,比如添加统计特征、多模态内容特征等
3.1.2 多目标预估
- 改进1:增加新的预估目标,并把预估结果加入融合公式。
- 改进2:MMoE、PLE等结构可能有效,但往往无效。
- 改进3:纠正position bias可能有效,也可能无效。
3.2 粗排模型的改进
粗排模型的打分量比精排大10被,因此粗排必须够快。
3.2.1 粗排模型
- 简单模型:多向量双塔模型
- 复杂模型:三塔模型效果好,但工程实现难度较大
3.2.2 粗精排一致性建模
- 蒸馏精排训练粗排
- pointwise蒸馏
- 设 y y y是用户真实行为, p p p是精排的预估
- 用 y + p 2 \frac{y+p}{2} 2y+p作为粗排拟合的目标
- pairwise或listwise蒸馏
- 给定 k k k个候选物品,按照精排预估做排序。
- 做learning to ranke(LTR),让粗排拟合物品的序(而非值)
- pointwise蒸馏
- 优点:粗精排一致性建模可以提升核心指标。
- 缺点:如果精排出bug,精排预估值 p p p有偏,会污染粗排训练数据。
3.3 用户行为序列建模
- 改进1:增加序列长度,让预测更准确,但是会增加计算成本和推理时间。
- 改进2:筛选的方法,比如用类目、物品向量表征聚类。
- 改进3:对用户行为序列中的物品,使用ID以外的一些特征。
目前大都沿着SIM的方向发展,让原始序列尽量长,然后做筛选降低序列长度,最后将筛选结果输入DIN。
3.4 在线学习
全量更新 vs 增量更新
- 在线学习的资源消耗:
- 既需要在凌晨做全量更新,也需要全天不间断做增量更新。
- 假设线上有 m m m个模型,其中1个是holdout,一个是推全的模型, m − 2 m-2 m−2个测试的新模型。每套在线学习的机器成本都很大,因此 m m m数量很小,制约模型开发迭代的效率。
3.5 老汤模型
- 老汤模型:老模型训练得非常好,很难被超越。
3.5.1 如何快速判断新模型结构是否由于老模型?(只去看结构,老模型训练更久,新模型想要追平比较困难)
- 对于新、老模型结构,都随机初始化模型全连接层。
- Embedding可以是随机初始化,也可以复用老模型训练好的参数。
- 用 n n n天的数据训练新老模型(从旧到新,训练1 epoch)
- 如果新模型显著优于老模型,新模型很可能更优。
3.5.2 如何更快追平线上的老模型?
- 方法1:尽可能多地复用老模型训练好的Embedding层(embedding学的比全连接慢)。
- 方法2:用老模型做teacher,蒸馏新模型。
4 多样性
4.1 排序的多样性
4.1.1 精排多样性
- 精排阶段,结合兴趣分数和多样性分数对物品 i i i排序
- 常用MMR、DPP等方法计算多样性分数,精排使用滑动窗口(精排决定最终的曝光,曝光页面上邻近的物品相似度应该小),粗排不适用滑动窗口(考虑整体的多样性)
- 除了多样性分数,精排还是用打散策略增加多样性
4.1.2 粗排多样性
- 根据兴趣分数进行排序,将分数最高的部分物品送入粗排。
- 在剩余的物品中,对每个物品 i i i计算兴趣分数 s i s_i si和多样性分数 d i d_i di,选择综合分数最高的部分物品进入精排。
4.2 召回的多样性
4.2.1 双塔模型:添加噪声
- 线上做召回时(在计算出用户向量之后,在做ANN检索之前),往用户向量中添加随机噪声。
- 用户的兴趣越窄,添加的噪声需要越强。
- 添加噪声在推荐准确度和多样性之间进行平衡。
4.2.2 双塔模型:抽样用户行为序列
- 保留用户行为序列中最近的 r r r个物品( r < < n r<<n r<<n),从剩余 n − r n-r n−r个物品中随机抽样 t t t个物品( t < < n t<<n t<<n)。
- 将得到的 r + t r+t r+t个物品作为用户行为序列,而不是用全部 n n n个物品。
Q:为什么抽样用户行为序列可以涨指标?
A:(1)提升多样性;(2)可以捕捉用户较长时间之前的兴趣。
4.2.3 U2I2I:抽样用户行为序列
- 种子物品覆盖的类目数可能非常少,且类目不平衡。
- 做非均匀随机抽样,从 n n n个物品中选出 t t t个,让类目平衡。用抽样得到的 t t t个物品代替U2I2I的种子物品。(多样性提升+覆盖的类目更多)
4.3 探索流量
- 每个用户曝光的物品中又2%是非个性化的,用作兴趣探索。
- 维护一个精选内容池,其中物品均为交互率指标高的优质物品。(用高质量弥补兴趣)
- 提权/强插
- 兴趣探索在短期内负面影响核心指标,但是长期会带来正面影响。
5 特殊对待特殊用户人群
- 为什么要特殊对待特殊人群?
- 新用户、低活用户的行为很少,个性化推荐不推荐。
- 新用户、低活用户容易流失,要想办法留存。
- 特殊用户的行为不同于主流用户,基于全体用户行为训练出的模型在特殊用户人群上有偏。
5.1 构造特殊内容池
- 特殊人群的行为很少,个性化召回不准确(用高质量弥补准确度)。
- 针对特定人群的特点构造特殊内容池,提升用户满意度。
5.1.1 如何构造特殊内容池
-
方法一:根据物品获得的交互次数、交互率选择优质物品。
- 圈定人群,构造内容池。
- 内容池有弱个性化的效果。内容池需要定期更新。该内容池只对该人群生效。
-
方法二:做因果推断,判断物品对人群留存率的贡献,根据贡献值选物品。
5.1.2 特殊内容池的召回
-
双塔模型是个性化的,对于新用户,可能不准,但是可以靠高质量、弱个性化做弥补。
-
额外的训练代价?No
- 正常用户,只训练一个双塔模型。
- 对于新用户,由于历史交互记录少,需要单独训练一个双塔模型。
-
额外的推理代价?Yes
- 内容池定期更新,然后做更新ANN检索。
- 线上做召回时,需要做ANN检索。
- 特殊内容池很小,所以增加的额外算力不会很大。
5.2 使用特殊排序策略
5.2.1 排除低质量物品
- 对于特殊人群,业务上只关注留存,不在乎消费(少出广告、甚至不出广告)。
- 新发布的物品不在新用户、低活用户上做探索,避免伤害用户体验。
5.2.2 差异化的融分公式
- 新用户、低活用户的点击、交互行为不同于正常用户。
- 低活用户的人均点击量很小。
- 融分公式中提高预估点击率的权重。
- 保留几个曝光坑位给预估点击率最高的几个物品。
5.3 特殊的排序模型
5.3.1 差异化的排序模型
-
问题:排序模型被主流用户主导,对特殊用户做不准预估。
-
方法:
- 大模型+小模型
- 用全体用户行为训练大模型,其预估 p p p拟合用户行为 y y y
- 用特殊用户的行为训练小模型,小模型的预估 q q q拟合大模型的残差 y − p y-p y−p。
- 主流用户只用大模型预估 p p p,特殊用户融合两个模型预估 p + q p+q p+q。
- 融合多个experts,类似MMoE。(小神经网络的输入只有用户特征)
- 大模型预估之后,用小模型做校准。
- 大模型做主流用户的预估,小模型输入大模型的输出,做refine。
- 大模型+小模型
-
错误的做法:每个用户人群设计一个大模型(短期有益,长期有害,维护成本高)
6 利用交互行为
- 如何利用交互行为?
- 最简单的方法:将模型预估的交互率用于排序。
6.1 关注
6.1.1 关注作者数量对用户留存的价值
-
用户留存率 r r r与他关注的作者数量 f f f正相关。
-
如何利用关注关系提升用户留存?
-
用排序策略提升关注量。
- 对于用户 u u u,模型预估候选物品 i i i的关注率 p i p_i pi。
- 设用户 u u u已经关注了 f f f个作者。
- 定义单调递减函数 w ( f ) w(f) w(f),在排序融分公式中添加 w ( f ) ⋅ p i w(f)\cdot p_i w(f)⋅pi,用于促关注。
-
构造促关注内容池和召回通道:
- 如果用户关注的作者数较小,则对该用户使用该内容池。
-
6.1.2 粉丝数对促发布的价值
- 交互可以提升作者发布积极性。
- 用排序策略帮助低粉新作者涨粉
6.1.3 隐式关注关系
-
召回通道U2A2I
-
隐式关注关系:用户 u u u喜欢看作者 a a a发布的物品,但是 u u u并没有关注 a a a。
6.2 转发(分享)
6.2.1 促转发(分享回流)
Q:简单提升转发次数是否有效?
A:否。增大融分公式中预估转发率的权重,可以促转发,但是会负面影响点击率和其他交互率。
6.2.2 KOL建模
-
目标:在不损害点击和其他交互的前提下,尽量多吸引站外流量。
-
**其他平台的Key Opinion Leader(KOL)**可以吸引大量站外流量。
-
如何判断本平台的用户是不是其他平台的KOL?
- 该用户历史上的转发能带来多少站外流量。
6.2.3 促转发的策略
- 识别出站外KOL之后,如何用于排序和召回?
- 方法一:排序融分公式中添加额外的一项 k u ⋅ p u i k_u\cdot p_{ui} ku⋅pui
- 方法二:构造促转发内容吃和召回通道,对站外KOL生效。
6.3 评论
6.3.1 评论促发布
- 如果新发布的物品尚未获得很多评论,则对预估评论率提权,让物品尽快获得评论。
6.3.2 评论的其他价值
- 有些用户喜欢留评论,喜欢跟作者、评论区互动(添加促评论的内容池,有利于提升用户留存)。
- 有些用户常留高质量评论(点赞量高),高质量评论对作者、其他用户的留存有贡献。