推荐系统中的i2i,u2u2i,u2i2i和u2tag2i

博客围绕推荐系统展开,介绍了推荐系统的冷启动问题,包括标的物冷启动、用户冷启动和系统冷启动。还阐述了基于内容推荐的优缺点,优点如无需其他用户数据、适合冷启动阶段等,缺点有特征提取难、过于专门化等,且适用于文本领域。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

推荐系统中的i2i,u2u2i,u2i2i和u2tag2i 是什么

推荐系统的冷启动问题

推荐系统的主要目标是将大量的标的物推荐给可能喜欢的海量用户, 这里涉及到标的物用户两类对象。

任何互联网推荐产品, 标的物和用户都是不断增长变化的,所以一定会频繁面对新标的物和新用户, 推荐系统冷启动问题指的就是对于新注册的用户或者新入库的标的物, 该怎么给新用户推荐标的物让用户满意,怎么将新标的物分发出去,推荐给喜欢它的用户。

另外,如果是新开发的产品,初期用户很少,用户行为也不多,常用的协同过滤、深度学习依赖大量用户行为的算法不能很好的训练出精准的推荐模型, 怎么让推荐系统很好的运转起来,让推荐变得越来越准确,这个问题就是系统冷启动

总之,推荐系统冷启动主要分为标的物冷启动用户冷启动系统冷启动三大类。

[推荐系统冷启动 ](https://cloud.tencent.com/developer/article/1665549#:~:text=什么是冷启动? 推荐系统的主要目标是将大量的标的物推荐给可能喜欢的海量用户%2C 这里涉及到,标的物 和 用户 两类对象。)

基于内容的推荐的优缺点

优点:

基于内容的推荐一般是推荐系统的起步阶段,而且会持续存在,其重要性不可替代。

(1) 为某一用户做推荐的时候不需要使用其他用户的数据

(2) 产品冷启动阶段,新的物品要被推荐出去,首选内容推荐。

(3) 可解释性好,产品的特征决定了推荐值。

缺点:

(1) 某些物品的特征提取比较难。

(2) 过于专门化。永远不会推荐和用户曾经喜欢的物品不相干的物品,完全没有利用其它用户的喜好来提高对此用的推荐质量。

(3) 对于新用户有冷启动问题。新用户的用户画像为空,无法做出推荐。

新用户冷启动:推荐目前热度最高的物品、让新用户主动选择一些标签tag做推荐

适用场景:特别适合文本领域,比如新闻推荐等。核心在于把物品描述以及内容更好的利用起来。

基于内容的推荐算法

<think>好的,我需要帮助用户查找关于Nebula图数据库的操作指南。首先,我需要回顾用户提供的三个引用内容,看看是否有相关的信息。 引用[3]提到“图数据库查询与操作指南-以Nebula图数据库为例”,这直接关联到用户的问题。里面提到通过操作示例展示图数据库处理关系数据的能力,涉及社交网络分析、推荐系统等场景。这可能包含用户需要的操作指南内容。引用[1]引用[2]虽然也涉及Nebula的部署导入工具,但用户明确询问的是操作指南,所以引用[3]应该是最相关的。 接下来,我需要整理这些信息,用中文回答,并按照用户的格式要求来组织内容。确保使用正确的LaTeX格式,行内公式用$...$,独立公式用$$...$$,但用户的问题主要涉及操作指南,可能数学公式较少,但如果有相关内容需要展示,比如查询语句中的参数设置,可能需要用代码块。 用户还要求生成相关问题,我需要根据引用内容提出几个相关的问题,比如操作指南的具体内容、应用场景或工具使用等。此外,回答中引用的部分需要添加引用标识,如[^3]。 需要确保回答结构清晰,分步骤说明如何获取使用操作指南,可能包括官方文档、社区资源、示例操作等。同时,引用相关的内容来支持回答,例如引用[3]中的示例操作场景应用。 最后,检查是否符合所有系统级指令,如使用正确的中文、LaTeX格式无误、问题生成合理,以及引用标识正确添加。</think>关于Nebula图数据库的操作指南,以下是基于参考资料的详细说明: ### 一、基础操作流程 1. **数据建模** 需要先定义图结构,包括顶点(Vertex)、边(Edge)及其属性,例如社交网络中用户为顶点,关注关系为带权边$E_{weight}$。 2. **数据导入** 使用`nebula-importer`工具批量导入数据,支持CSV格式。引用[2]提到可通过并行导入优化性能。 3. **查询语言(nGQL)** 通过类SQL语法实现复杂查询,例如查找用户A的朋友: ```sql GO FROM "A" OVER follow WHERE follow.degree > 0.5 YIELD follow._dst AS friend; ``` 引用[3]指出此类操作适用于社交网络分析。 ### 二、核心功能操作示例 1. **路径查询** 使用`FIND PATH`语句分析关系链路: ```sql FIND SHORTEST PATH FROM "A" TO "G" OVER *; ``` 2. **索引优化** 对高频查询字段创建索引加速检索: ```sql CREATE TAG INDEX user_age_index ON user(age); ``` ### 三、应用场景实践 1. **推荐系统** 基于共同邻居算法生成推荐列表: ```sql MATCH (u1:User)-[:Buy]->(p:Product)<-[:Buy]-(u2:User) WHERE u1.user_id == "U001" RETURN u2.user_id, count(p) AS common_products ORDER BY common_products DESC; ``` 引用[3]强调此类操作在图数据库中具有高效性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Every DAV inci

小辣鸡一枚,不求打赏啦~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值