二分:
思路:将n个排完序的元素分成两半,取a[n/2]与要找的target元素进行比较。如果target==a[n/2],则找到target,结束程序。如果target<a[n/2],则只要在数组a的左半部分继续搜索target。如果target>a[n/2],则只需要在数组a的右半部分继续搜索target。
适用于将最优化问题变成判定性问题。
代码模板:
#include<bits/stdc++.h>
using namespace std;
int a[1000],ans;
int main()
{
int l=1,r=1e9;//l,r值为多少依题目意思改动
while(l<=r)
{
int mid=(r+l)/2;//r+l可能会爆int,可以改成mid=r+(l-r)/2;
if(a[mid]==target)
ans=mid;
else if(a[mid]>target)
l=mid+1;
else if(a[mid]<target)
r=mid-1;// +1,-1可能会根据题目意思舍去
}
cout<<ans<<endl;
return 0;
}
例题
[NOIP2015 提高组] 跳石头
链接: https://www.luogu.com.cn/problem/P2678.
dfs(深度优先搜索):
沿着树的深度遍历树的节点,尽可能深的搜索树的分支。当节点v的所在边都己被探寻过或者在搜寻时结点不满足条件,搜索将回溯到发现节点v的那条边的起始节点。整个进程反复进行直到所有节点都被访问为止。
适用于全排列、连通块、最优解、可行解问题。
代码模板:
#include<bits/stdc++.h>
using namespace std;
int p[100]={0};
bool vis[100];//记录是否被访问过
int n;
void dfs(int x)
{
if (x==n+1)
{
for(int i=1;i<=n;i++)
cout<<p[i]<<" ";
cout<<endl;
return ;
}
for (int i=1;i<=n;i++)
{
if (vis[i]==false )
{
p[x] = i;
vis[i] = true;
dfs(x+1);
vis[i] = false;
}
}
}
int main()
{
cin>>n;
dfs(1);
return 0;
}
例题
全排列问题
链接: https://www.luogu.com.cn/problem/P1706.
[NOIP2002 普及组] 选数
链接: https://www.luogu.com.cn/problem/P1036.
bfs(广度优先搜索):
沿着树的层数遍历树的节点。当层数的所在节点都己被探寻过,搜索将往下一层进行。整个进程反复进行直到所有节点都被访问为止。
适用于求最少、最短、最快的问题。
代码模板:
#include<bits/stdc++.h>
using namespace std;
queue <int> q; // 队列存储每一层的全部点
int vis[100][100]; // 记录是否被访问过
int bfs(起点,终点)
{
int step = 0; // 从起点到终点的步数
q.push(起点);//队列加入起点
vis[起点][起点]=1;//起点已经访问过
while (!q.empty())
{
step = step + 1;
int size = q.size();//记录当前队列元素个数
for (int i = 0; i < size; i++)
{
int cur = q.top();//返回队首元素
if (cur==终点)
return step - 1;
for (根据题目寻找下一个相邻点)
{
if (下一个没被访问)
{
q.push(下一个);
vis[下一个][下一个]=1;
}
}
q.pop(cur);//删除队首元素
}
}
return -1; // there is no path from root to target
}
例题
填涂颜色
链接: https://www.luogu.com.cn/problem/P1162.
题解
A - Lake Counting
就是求连通块个数。dfs向8个方向拓展一下就行了。下面是AC代码。
#include<iostream>
using namespace std;
int N,M;
char a[102][102];
int ans=0;
void dfs(int x,int y)
{
if(x<0||y<0||x>=N||y>=M)//防止越边界
return ;
a[x][y]='P';//改成除了 . 和 W ,其他都可以。
//8个方向拓展
if(a[x+1][y+1]=='W'){dfs(x+1,y+1);}
if(a[x-1][y-1]=='W'){dfs(x-1,y-1);}
if(a[x+1][y-1]=='W'){dfs(x+1,y-1);}
if(a[x-1][y+1]=='W'){dfs(x-1,y+1);}
if(a[x][y+1]=='W'){dfs(x,y+1);}
if(a[x][y-1]=='W'){dfs(x,y-1);}
if(a[x+1][y]=='W'){dfs(x+1,y);}
if(a[x-1][y]=='W'){dfs(x-1,y);}
return ;
}
int main()
{
scanf("%d%d",&N,&M);
for(int i=0;i<N;i++)
for(int j=0;j<M;j++)
scanf(" %c",&a[i][j]);//要注意输入,否则会将换行符输入
for(int i=0;i<N;i++)
for(int j=0;j<M;j++)
if(a[i][j]=='W')//如果找到了W,就从这里开始深搜
{
ans++;//连通块个数+1
dfs(i,j);
// for(int q=0;q<N;q++)//一开始用来确认是否改完了全部连通块
// {
// for(int w=0;w<M;w++)
// printf("%c",a[q][w]);
// cout<<endl;
// }
}
printf("%d\n",ans);
return 0;
}
B - Red and Black
求某个特定连通块的个数。思路与A相同。
#include<iostream>
#include<string.h>
using namespace std;
int N,M;
char a[102][102];
int ans=1;
void dfs(int x,int y)
{
if(x<0||y<0||x>=N||y>=M)
return ;
a[x][y]='P';
ans++;
//这里题目是4个方向
if(a[x][y+1]=='.'){dfs(x,y+1);}
if(a[x][y-1]=='.'){dfs(x,y-1);}
if(a[x+1][y]=='.'){dfs(x+1,y);}
if(a[x-1][y]=='.'){dfs(x-1,y);}
return ;
}
int main()
{
while(cin>>M>>N)
{
memset(a,0,sizeof(a));
ans=0;
if(N==0&&M==0)
return 0;
for(int i=0;i<N;i++)
for(int j=0;j<M;j++)
scanf(" %c",&a[i][j]);
for(int i=0;i<N;i++)
for(int j=0;j<M;j++)
if(a[i][j]=='@')//找到特定的位置开始dfs
dfs(i,j);
printf("%d\n",ans);
}
return 0;
}
E - Find The Multiple
求给定n(n<=200)的倍数m,要求m只能由0或者1组成。m可以从1 * 10和 1 * 10 + 1开始试。bfs,dfs都可以。
G - MaratonIME gets candies
典型的二分题。
#include<bits/stdc++.h>
using namespace std;
int main()
{
long long l=1,r=1e9;
while(l<=r)//这里要=,没写会WA了。
{
char s;
long long mid=(r+l)/2;
cout<<"Q "<<mid<<endl;
cout.flush();
cin>>s;
if(s=='=')
return 0;
if(s=='>')
l=mid+1;
if(s=='<')
r=mid-1;
}
return 0;
}
I - Expanding Rods
就是一道数学题加上二分。
#include<iostream>
#include<string.h>
#include <math.h>
using namespace std;
const double pai=acos((double)-1);
//pai一定要精确。一开始用了3.142代替WA了。具体原因想了好久,看上图解释。
int main()
{
double a,b,c;
while(cin>>a>>b>>c)
{
if(a<0&&b<0&&c<0)
return 0;
if(b==0||c==0)
{
printf("0.000\n");
continue;
}
//题目说最多不超过1.5L,所以上界选了pai/2
double l=0,r=pai/2,X=(1+1.0*b*c)*a/2,L=1.0*a/2;
while(r-l>=1e-15)//精度慢慢试,小了会TLE,大了会WA
{
double mid=1.0*(r+l)/2;
double cor=1.0*X/L,now=1.0*mid/(sin(mid));
if(now>cor)
r=mid;
else
l=mid;
}
double ans=L/sin(r)-L/tan(r);
printf("%.3f\n",ans);
}
return 0;
}
J - Obtain Two Zeroes
分析后可以得知只要满足a=2m+n,b=m+2n。(m>=0,n>=0)最后的式子就是求出m=2a-b>=0,n=2b-a>=0,还得保证m,n是整数,用m+n为整数即可,可换成a+b是3的倍数。
#include <iostream>
using namespace std;
int main()
{
int T;
cin>>T;
while(T--)
{
int a,b;
cin>>a>>b;
if((a+b) %3==0&&2*a>=b&&2*b>=a)//正着反着都行
cout<<"YES"<<endl;
else
cout<<"NO"<<endl;
}
return 0;
}