负载均衡之一致性hash算法实现

文章介绍了传统哈希算法的局限性,提出使用哈希环和一致性哈希算法进行负载均衡,同时采用模板方法设计模式,确保可扩展性。ConsistentHashBalancer子类实现了基于ConsistentHashSelector的选择策略,利用treemap均匀分布服务节点。
摘要由CSDN通过智能技术生成

传统hash算法的思路:

 局限性很大 不便于修改 动态扩容时及其麻烦 需要重新rebalance 且做不到负载均衡

改进:

使用哈希环 计算出下标后 顺时针 直到寻找到第一个节点 

出现动态扩缩容的时候 也能很好应对

将hash值均匀的分布在一个区间、采用环状的数据结构(treemap) 、为每一个节点创建若干虚拟节点 防止产生严重的流量倾斜

 设计思路:

因为负载均衡策略很多 为了保证可扩展性 设计之初就应该构思清晰  我选择采用模板方法设计模式

不仅为抽象出负载策略接口 还抽象出选择器接口

目录结构

父类接口

public interface LoadBalancer {

    /**
     * 根据服务名获取一个可用的服务
     * @param serviceName 服务名称
     * @param group
     * @return 服务地址
     */
    InetSocketAddress selectServiceAddress(String serviceName,String group);

    /**
     * 当感知节点发生了动态上下线,我们需要重新进行负载均衡
     * @param serviceName 服务的名称
     * @param addresses 服务列表
     */
    void reLoadBalance(String serviceName, List<InetSocketAddress> addresses);
}

public interface Selector {
    /**
     * 根据服务列表执行一种算法获取一个服务节点
     * @return 具体的服务节点
     */
    InetSocketAddress getNext();
}

public abstract class AbstractLoadBalancer implements LoadBalancer {

    /**
     * 一个服务会匹配一个selector
     * 一个服务 会有多个节点 选择节点的算法也不相同
     */
    private Map<String, Selector> cache = new ConcurrentHashMap<>(8);

    /**
     * 寻找服务地址
     *
     * @param serviceName 服务名称
     * @return
     */
    @Override
    public InetSocketAddress selectServiceAddress(String serviceName,String group) {
        Selector selector = cache.get(serviceName);
        if (selector == null) {
            // 对于这个负载均衡器,内部应该维护服务列表作为缓存
            List<InetSocketAddress> serviceList = RpcBootstrap.getInstance()
                    .getConfiguration().getRegistryConfig().getRegistry().lookup(serviceName,group);
            // 提供一些算法负责选取合适的节点
            selector = getSelector(serviceList);
            // 将select放入缓存当中
            cache.put(serviceName, selector);
        }
        // 获取可用节点
        return selector.getNext();
    }

    @Override
    public void reLoadBalance(String serviceName, List<InetSocketAddress> addresses) {
        // 根据新的服务列表生成新的selector
        cache.put(serviceName, getSelector(addresses));
    }

    /**
     * 由子类进行扩展
     *
     * @param serviceList 服务列表
     * @return 负载均衡算法选择器
     */
    protected abstract Selector getSelector(List<InetSocketAddress> serviceList);
}

子类实现 

@Slf4j
public class ConsistentHashBalancer extends AbstractLoadBalancer {

    @Override
    protected Selector getSelector(List<InetSocketAddress> serviceList) {
        return new ConsistentHashSelector(serviceList, 128);
    }

    /**
     * 一致性hash的具体算法实现
     */
    private static class ConsistentHashSelector implements Selector {
        // hash环用来存储服务器节点
        private SortedMap<Integer, InetSocketAddress> circle = new TreeMap<>();
        // 虚拟节点的个数
        private int virtualNodes;

        public ConsistentHashSelector(List<InetSocketAddress> serviceList, int virtualNodes) {
            //把每个节点转换成虚拟节点
            this.virtualNodes = virtualNodes;
            serviceList.forEach(this::addNodeToCircle);
        }

        /**
         * 根据请求参数 选择 虚拟节点
         *
         * @return
         */
        @Override
        public InetSocketAddress getNext() {
            RpcRequest rpcRequest = RpcBootstrap.REQUEST_THREAD_LOCAL.get();
            // 我们想根据请求的一些特征来选择服务器  id
            String requestId = Long.toString(rpcRequest.getRequestId());
            // 请求的id做hash string的hash有问题 连续的string计算出的hash也是连续的
            int hash = hash(requestId);
            // 判断该hash值是否能直接落在一个节点上
            if (!circle.containsKey(hash)) {
                // 寻找最近的一个节点
                // 获得了位于 hash 之后的所有键值对
                SortedMap<Integer, InetSocketAddress> tailMap = circle.tailMap(hash);
                // 如果给定的 hash 值在映射中没有对应的键,它会回到映射的起始处,形成一个环形
                hash = tailMap.isEmpty() ? circle.firstKey() : tailMap.firstKey();
            }
            return circle.get(hash);
        }

        /**
         * 将每个节点挂载到hash环上
         *
         * @param inetSocketAddress
         */
        private void addNodeToCircle(InetSocketAddress inetSocketAddress) {
            // 为每一个节点生成匹配的虚拟节点进行挂载
            for (int i = 0; i < virtualNodes; i++) {
                //确保访问相同的地址 hash也不会相同 减少同一个节点的负荷
                int hash = hash(inetSocketAddress.toString() + "-" + i);
                // 关在到hash环上
                circle.put(hash, inetSocketAddress);
                if (log.isDebugEnabled()) {
                    log.debug("hash为[{}]的节点已经挂载到了哈希环上.", hash);
                }
            }
        }

        /**
         * 删除节点
         * @param inetSocketAddress
         */
        private void removeNodeFomCircle(InetSocketAddress inetSocketAddress) {
            // 为每一个节点生成匹配的虚拟节点进行挂载
            for (int i = 0; i < virtualNodes; i++) {
                int hash = hash(inetSocketAddress.toString() + "-" + i);
                // 关在到hash环上
                circle.remove(hash);
            }
        }

        /**
         * 具体的hash算法  todo 小小的遗憾,这样也是不均匀的 后面再慢慢琢磨 数字太大
         * 原始的hash不满足
         *
         * @param s
         * @return
         */
        private int hash(String s) {
            MessageDigest md;
            try {
                md = MessageDigest.getInstance("MD5");
            } catch (NoSuchAlgorithmException e) {
                throw new RuntimeException(e);
            }
            byte[] digest = md.digest(s.getBytes());
            // md5得到的结果是一个字节数组,但是我们想要int 4个字节
            int res = 0;
            for (int i = 0; i < 4; i++) {
                if (i != 0){
                    res = res << 8;
                }
                if( digest[i] < 0 ){
                    res = res | (digest[i] & 255);
                } else {
                    res = res | digest[i];
                }
            }
            return res;
        }
    }
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值