Problem Description
据说在很久很久以前,可怜的兔子经历了人生中最大的打击——赛跑输给乌龟后,心中郁闷,发誓要报仇雪恨,于是躲进了杭州下沙某农业园卧薪尝胆潜心修炼,终于练成了绝技,能够毫不休息得以恒定的速度(VR m/s)一直跑。兔子一直想找机会好好得教训一下乌龟,以雪前耻。 最近正值HDU举办50周年校庆,社会各大名流齐聚下沙,兔子也趁此机会向乌龟发起挑战。虽然乌龟深知获胜希望不大,不过迫于舆论压力,只能接受挑战。 比赛是设在一条笔直的道路上,长度为L米,规则很简单,谁先到达终点谁就算获胜。 无奈乌龟自从上次获胜以后,成了名龟,被一些八卦杂志称为“动物界的刘翔”,广告不断,手头也有了不少积蓄。为了能够再赢兔子,乌龟不惜花下血本买了最先进的武器——“"小飞鸽"牌电动车。这辆车在有电的情况下能够以VT1 m/s的速度“飞驰”,可惜电池容量有限,每次充满电最多只能行驶C米的距离,以后就只能用脚来蹬了,乌龟用脚蹬时的速度为VT2 m/s。更过分的是,乌龟竟然在跑道上修建了很多很多(N个)的供电站,供自己给电动车充电。其中,每次充电需要花费T秒钟的时间。当然,乌龟经过一个充电站的时候可以选择去或不去充电。 比赛马上开始了,兔子和带着充满电的电动车的乌龟并列站在起跑线上。你的任务就是写个程序,判断乌龟用最佳的方案进军时,能不能赢了一直以恒定速度奔跑的兔子。
Input
本题目包含多组测试,请处理到文件结束。每个测试包括四行: 第一行是一个整数L代表跑道的总长度 第二行包含三个整数N,C,T,分别表示充电站的个数,电动车冲满电以后能行驶的距离以及每次充电所需要的时间 第三行也是三个整数VR,VT1,VT2,分别表示兔子跑步的速度,乌龟开电动车的速度,乌龟脚蹬电动车的速度 第四行包含了N(N<=100)个整数p1,p2…pn,分别表示各个充电站离跑道起点的距离,其中0<p1<p2<…<pn<L 其中每个数都在32位整型范围之内。
Output
当乌龟有可能赢的时候输出一行 “What a pity rabbit!“。否则输出一行"Good job,rabbit!”; 题目数据保证不会出现乌龟和兔子同时到达的情况。
Sample Input
100
3 20 5
5 8 2
10 40 60
100
3 60 5
5 8 2
10 40 60
Sample Output
Good job,rabbit!
What a pity rabbit!
思路
首先我们状态定义定义为:dp[i] , 到达第i个充电站的最小时间花费。
我们可以处理0点为我们的起点 , i+1点为我们的终点。
当我们枚举第i个充电站的最短距离时,我们一定是从前0~i-1个点枚举得到的最小时间花费。
我们定义 t 为j点到i点的花费时间,再加上 到达j点的最小时间花费 dp[j],
那么我们可以得到状态转移方程: dp[i]=min(dp[j]+t) , (j 为 [0,i-1]范围 )
其次,有个地方需要注意,就是第i个充电站充电和不充电的选择,一开始想的是dp[i][2]这个
定义,但是发现,因为起点开始默认是已经充满电了,所以在第0个充电站不用充电,而每一次计
算从j到i默认的是在j充满电后出发到i,其过程中是不充电的。而我们每次从j点出发,都是默认
充满电,且时间都是t秒,此时第j+1是没有选择充电的,下一次j迭代加1就会选择充电,然后加上
前面更新的最优解dp[j],表示得到选择第j+1个充电站充电方案所用时间的最优解。
参考代码
#include <bits/stdc++.h>
#define io ios::sync_with_stdio(false), cin.tie(0), cout.tie(0)
#define LL long long
#define PII pair<int, int>
#define PIII pair<int, PII>
#define PSI pair<string, int>
#define PIIS pair<int, pair<int, string>>
#define PDD pair<double, double>
using namespace std;
const int INF = 0x3f3f3f3f;
const int N = 1e5 + 5;
const int M = 1e6;
const int mod = 1e9 + 7;
const int add = 1e6;
double dp[111]; //到达第i个点的最短时间
int p[111]; //第i个点的距离
int main()
{
// io;
int L,n,c,T,vr,vt1,vt2;
while(cin>>L)
{
cin>>n>>c>>T;
cin>>vr>>vt1>>vt2;
for(int i=1;i<=n;i++)
{
cin>>p[i];
}
//预处理起点和终点,
p[0]=0;
p[n+1]=L;
dp[0]=0;
double t;
for(int i=1;i<=n+1;i++)
{
//寻找前i-1个点出发到达i点的最短用时
double minc=INF;
for(int j=0;j<i;j++)
{
//两充电桩位置
int d=p[i]-p[j];
//2点距离差大于满电骑行距离
if(d>c)
{
t=c*1.0/vt1+(d-c)*1.0/vt2;
}
//满电骑行距离大于2点距离
else t=d*1.0/vt1;
//加上之前到达j充电站的时间
t+=dp[j];
//加上每个点充电的花费时间,起点除外,因为已经充满电了
if(j>0)t+=T;
minc=min(minc,t);
}
dp[i]=minc;
}
if(L*1.0/vr>dp[n+1])cout<<"What a pity rabbit!\n";
else cout<<"Good job,rabbit!\n";
}
// system("pause");
return 0;
}
/*
*/