题目:给定一个 n
个元素有序的(升序)整型数组 nums
和一个目标值 target
,写一个函数搜索 nums
中的 target
,如果目标值存在返回下标,否则返回 -1
。
什么是二分法呢? 二分法,又称为二分查找、折半查找,是一种在有序数组中查找目标值的常用算法。其原理是通过将数组分成两半,然后判断目标值与数组中间元素的大小关系,从而确定目标值在哪一半数组中。然后再对该半数组进行同样的操作,直到找到目标值或者确定目标值不存在为止。二分法的基本步骤如下:
- 首先,确定要查找的数组的范围,通常是整个数组。
-
找到数组的中间元素,计算其索引位置,通常是
(left + right) / 2
,其中left
和right
分别表示数组的左边界和右边界。 -
检查中间元素与目标值的大小关系:
- 如果中间元素等于目标值,则返回其索引。
- 如果中间元素大于目标值,则在左半部分继续查找。
- 如果中间元素小于目标值,则在右半部分继续查找。
-
根据上一步的结果,更新数组的范围,并重复步骤 2 和 3,直到找到目标值或者确定目标值不存在。
但是有需要注意的地方!!!!!
写代码的时候,关于数组索引区间边界开区间和闭区间的问题,一般情况下有两种:①左闭右闭;②左闭右开。右开左闭暂不考虑。它会影响到写循环条件的选择以及对于循环过程中中间元素索引的选择。
首先是左闭右闭的的情况:
class Solution {
public:
int search(vector<int>& nums, int target) {
int l = 0;
int r = nums.size()-1;
while(l <= r){
int m = l + (r - l)/2;
if(nums[m] > target){
r = m - 1;
}
else if(nums[m] < target){
l = m + 1;
}
else{
return m;
}
}
return -1;
}
};
然后是是左闭右开的的情况:
class Solution {
public:
int search(vector<int>& nums, int target) {
int l = 0;
int r = nums.size();
while(l < r){
int m = l + (r - l)/2;
if(nums[m] > target){
r = m ;
}
else if(nums[m] < target){
l = m + 1;
}
else{
return m;
}
}
return -1;
}
};
想必大家已经看出了一些不同了,首先是选择开闭区间的时候,r的取值。然后是while循环时,循环条件中的条件运算符"<="和"<"的选取。最后是if条件语句中,r的取值。
这需要对数组索引有一个比较明确的了解,以及在比较完m之后对于l和r的位置替换,具体的原理以及为什么这么做可以参考B站up主--代码随想录,对这道题的完美解释。
谢谢大家,继续努力。