小阳同学刷题日记-69. x 的平方根

        题目: 给你一个非负整数 x ,计算并返回 x 的 算术平方根 。由于返回类型是整数,结果只保留 整数部分 ,小数部分将被 舍去 。

        注意:不允许使用任何内置指数函数和算符,例如 pow(x, 0.5) 或者 x ** 0.5 。

        思路:一种常见的解决方案是使用二分查找算法。二分查找的思想是在一个有序的数据集中查找某个特定元素的算法。在这个问题中,我们可以利用二分查找来逼近计算 x 的平方根。

        初始化搜索范围为 [0, x],分别用 l 和 r 表示左右边界。

        在每一次迭代中,计算中间值 m,然后比较  m*m x 的大小:

  • 如果   m*m 大于 x,则将搜索范围缩小为 [l, m-1]
  • 如果   m*m 小于 x,则将搜索范围缩小为 [m, r]
  • 如果   m*m 等于 x,则找到了 x 的平方根,直接返回 m

        当 l大于 r 时,结束循环,返回 r,这是因为 r 是最接近 x 的平方根的整数部分。

        代码如下:

class Solution {
public:
    // 定义一个名为 mySqrt 的公有成员函数,用于计算 x 的整数部分平方根
    int mySqrt(int x) {
        // 如果 x 小于等于 1,则直接返回 x
        if (x <= 1) {
            return x;
        }

        // 初始化左右边界
        int l = 0; // 左边界
        int r = x; // 右边界
        // 使用二分查找进行查找
        while (l <= r) {
            // 计算中间值
            int m = l + (r - l) / 2;
            // 将中间值的平方转换为 long long 类型,避免溢出
            long long square = (long long)m * m;
            // 比较中间值的平方与 x 的大小
            if (square < x) { // 如果平方小于 x,则将搜索范围缩小为 [m + 1, r]
                l = m + 1;
            } else if (square > x) { // 如果平方大于 x,则将搜索范围缩小为 [l, m - 1]
                r = m - 1;
            } else if (square == x) { // 如果平方等于 x,则找到了整数部分平方根,直接返回
                return m;
            }
        }

        // 返回右边界 r,这是因为 r 是最接近 x 的整数部分平方根的整数
        return r;
    }
};

        谢谢大家,继续努力。        

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值