机器学习(一)——什么是机器学习

本文概述了机器学习的基本概念,包括其起源于人工智能和数据科学,强调学习过程中的归纳和模型选择的重要性。历史发展部分介绍了归纳、演绎和溯因在机器学习中的角色,并突出了模型假设、评估与优化的关键步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.什么是机器学习?

1.1 机器学习定义

在这里插入图片描述

机器学习的诞生来源于两个领域:
1.人工智能(artificial intelligence)。
ML是AI四象限中的一个(think optimal)。人工智能主要包括机器学习和深度学习。深度学习是机器学习的一个分支。
2.数据科学(data science)。
机器学习(Machine Learning):根据已有的经验(数据),找(算法)出规律(模型),并用于预测未知的数据,重视模型的泛化generalization能力。即对于一个任务T,根据经验E,有一个表现的衡量P,随着E的增加,P在T上表现更好。

机器学习的技术定义:在预先定义好的可能性空间中,利用反馈信号的指引来寻找输入数据的有用表示。

2.理解

  • 机器学习可以理解为计算应用统计学;ML是关于归纳induction(特殊/具体到一般/抽象),而不是演绎deduction(一般/抽象到特殊/具体)或者 溯因abduction。
  • 学习机器学习这门学科,主要是学习思想,公式和算法是对思想进行量化的工具。
  • 数据(指做了数据预处理特征工程的数据)决定了模型的上限,而算法只是逼近这个上限。
  • 机器学习和深度学习的核心问题在于有意义的变换数据,即学习输入数据的有用表示(representation)。所谓“表示”,就是用不同的方式来查看数据(数据编码或表证数据)。所谓“学习”,就是寻找更好数据表示的自动搜索过程。
  • 机器学习(尤其是深度学习)呈现出相对较少的数学理论,是以工程为导向,是一门需要上手实践的学科。
  • 想要控制一件事物,首先需要能够观察它。对于机器学习来说,观察点就是损失函数(loss function)。
  • 面对一个尚没有已知解决方案的新问题,可先尝试一种**基于常识的基准(baseline)**方法,它可以作为合理性检查,而更高级的机器学习模型需要打败这个基准才能表现其有效性。

3.历史

在这里插入图片描述

4.归纳、演绎、溯因

归纳、演绎、溯因是推理的三种常见形式,而机器学习中任务是关于归纳的。
在这里插入图片描述

5.抽象理解

【模型假设】确定Model(funtion set)或者 假设空间(hypothesis space)>>>
【模型评估】确定评估Model的方法:衡量一种参数的好坏 L(w,b) >>>
【最佳模型】选出最佳模型:梯度下降
在这里插入图片描述
在这里插入图片描述

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Vicky__3021

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值