模式识别
文章平均质量分 73
Vicky__3021
想看看自己能爬多高
展开
-
使用ID3算法构造决策树——python
补充python代码,完成DecisionTree类中的fit和predict函数。为了完成本关任务,你需要掌握:ID3算法ID3算法其实就是依据特征的信息增益来构建树的。其大致步骤就是从根结点开始,对结点计算所有可能的特征的信息增益,然后选择信息增益最大的特征作为结点的特征,由该特征的不同取值建立子结点,然后对子结点递归执行上述的步骤直到信息增益很小或者没有特征可以继续选择为止。因此,ID3算法伪代码如下:使用决策树进行预测决策树的预测思想非常简单,假设现在已经构建出了一棵用来决策是否买西...原创 2022-07-06 17:13:22 · 5151 阅读 · 0 评论 -
信息熵与信息增益——python
根据本关所学知识,完成calcInfoEntropy函数,calcHDA函数以及calcInfoGain函数。为了完成本关任务,你需要掌握:信息熵信息是个很抽象的概念。人们常常说信息很多,或者信息较少,但却很难说清楚信息到底有多少。比如一本五十万字的中文书到底有多少信息量。直到1948年,香农提出了“信息熵”的概念,才解决了对信息的量化度量问题。信息熵这个词是香农从热力学中借用过来的。热力学中的热熵是表示分子状态混乱程度的物理量。香农用信息熵的概念来描述信源的不确定度。信源的不确定性越大,信息熵...原创 2022-07-05 21:31:40 · 4116 阅读 · 0 评论 -
感知器 - 西瓜好坏自动识别——python
使用感知机算法建立一个模型,并根据感知器算法流程对模型进行训练,得到一个能够准确对西瓜好坏进行识别的模型。为了完成本关任务,你需要掌握:1.什么是感知器,2.感知器算法流程。数据介绍西瓜数据集中的样本特征一共有 30 个,包括:色泽、根蒂、敲声等。类别为是好瓜与不是好瓜。部分数据如下:由于我们的模型只能对数字进行计算。所以,我们用x1表示色泽,x2表示根蒂,x3 表示敲声 。y 表示类别。其中,x1 = 0,表示青绿,x2 = 2,表示稍蜷, y=-1,表示不是好瓜。具体如下图:而我们的...原创 2022-07-04 21:38:41 · 2925 阅读 · 0 评论 -
scikit-learn线性判别实践 - 随机生成数的降维——python
利用 sklearn 构建 LDA 对数据进行降维。为了完成本关任务,你需要掌握:1. LinearDiscriminantAnalysis。LinearDiscriminantAnalysis在降维时,LinearDiscriminantAnalysis 的构造函数中有一个常用的参数可以设置:LinearDiscriminantAnalysis 类中的 fit 函数用于训练模型,fit 函数有两个向量输入:X :大小为**[样本数量,特征数量]**的 ndarray,存放训练样本;Y :值为整...原创 2022-07-03 21:15:30 · 1819 阅读 · 0 评论 -
线性判别分析 - 随机生成数的降维——Python
使用 python 实现 LDA 并对给定数据进行降维。为了完成本关任务,你需要掌握:1.线性判别分析算法思想,2.二类线性判别分析算法原理,3.线性判别分析算法流程。线性判别分析算法思想LDA 的思想分析非常朴素:给定训练样本集,设法将样本投影到一条直线上,使得同类样本的投影点尽可能接近、异类样本点的投影点尽可能远离。在对新样本进行分类时,将其投影到同样的这条直线上,再根据投影点的位置来确定样本的类别。示意图如下:用一句话来概括 LDA 思想就是:投影后类内方差最小,类间方差最大。二类线性...原创 2022-07-01 19:39:53 · 1791 阅读 · 0 评论 -
朴素贝叶斯分类算法流程——python
在炎热的夏天你可能需要买一个大西瓜来解暑,但虽然你的挑西瓜的经验很老道,但还是会有挑错的时候。尽管如此,你可能还是更愿意相信自己经验。假设现在在你面前有一个纹路清晰,拍打西瓜后声音浑厚,按照你的经验来看这个西瓜是好瓜的概率有80%,不是好瓜的概率有20%。那么在这个时候你下意识会认为这个西瓜是好瓜,因为它是好瓜的概率大于不是好瓜的概率。朴素贝叶斯分类算法的预测流程朴素贝叶斯分类算法...原创 2022-06-28 10:42:36 · 2312 阅读 · 0 评论 -
计算样本欧式距离——python
实现一个函数来计算欧几里得距离。通常数据集中的样本都可描述为一个 n 维向量。每一个维度代表样本的一个属性。比如,对于用户 x 而言,其属性可能是收入、年龄、工作时间等,对于电影而言,其属性可能是出品年份、导演、风格等。本关卡学习欧几里得度量。欧几里得度量(Euclidean metric)(也称欧氏距离)是一个常用的距离定义,计算 n 维空间中,两个样本点之间的几何距离。两个在 n 维空间的点的欧几里得距离为:本关卡要求你实现函数 euclid_distance,在右侧编辑器 Begin-End ..原创 2022-06-27 23:15:16 · 3026 阅读 · 0 评论 -
主成分分析算法流程——python
补充 python 代码,完成 PCA (主成分分析)函数,实现降维功能。原创 2022-06-27 23:11:41 · 987 阅读 · 0 评论