1.众数问题
题目描述:
给定含有n个元素的多重集合S,每个元素在S中出现的次数称为该元素的重数。多重集S中重数最大的元素称为众数。例如,S={1,2,2,2,3,5}。多重集S的众数是2,其重数为3。对于给定的由n 个自然数组成的多重集S,计算S的众数及其重数。如果出现多个众数,请输出最小的那个。
输入格式:
输入数据的第1行是多重集S中元素个数n(n<1300000);接下来的n行中,每行有一个最多含有5位数字的自然数。
输出格式:
输出数据的第1行给出众数,第2行是重数。
样例
输入:
6
1
2
2
2
3
5
输出:
2
3
代码:
#include<bits/stdtr1c++.h>
using namespace std;
map<int, int> mp;
int main() {
int n;
scanf("%d", &n);
for (int i = 0, t; i < n; i++) {
scanf("%d", &t);
mp[t]++;
}
int max_num, max_sum = -1;
for (auto x : mp) {
if (x.second > max_sum) {
max_num = x.first;
max_sum = x.second;
}
}
printf("%d\n%d", max_num, max_sum);
return 0;
}
2.整数因子分解问题
题目描述:
大于1的正整数n可以分解为:n=x1x2…*xm。例如,当n=12 时,共有8 种不同的分解式:
12=12;
12=6 * 2;
12=4 * 3;
12=3 * 4;
12=3 * 2 * 2;
12=2 * 6;
12=2 * 3 * 2;
12=2 * 2 * 3。
对于给定的正整数n,计算n共有多少种不同的分解式。
输入格式:
输入数据只有一行,有1个正整数n (1≤n≤2000000000)。
输出格式:
将计算出的不同的分解式数输出。
样例
输入:
12
输出:
3
代码一(C++):
#include<bits/stdtr1c++.h>
using namespace std;
int a[10000000];
long long slv(int x) {
long long sum = 1; //最少为1,即数自身
if (x < 10000000 && a[x]) return a[x];
for (int i = 2; i * i <= x; i++) {
if (x % i == 0) { //i是n的因子
sum += slv(i); //递归
if (i * i != x) { //如果i不等于n开平方,则寻找另一个数
sum += slv(x / i); //递归
}
}
}
if (x < 10000000) a[x] = sum;
return sum;
}
int main() {
int n;
scanf("%d", &n);
printf("%lld", slv(n));
return 0;
}
代码二(Python):
ls = [0] * (int(1e5))
def slv(x):
sum = 1
if x < int(1e5) and ls[x]:
return ls[x]
for i in range(2, int(x ** 0.5 + 1)):
if x % i == 0:
sum += slv(i)
if i ** 2 != x:
sum += slv(x // i)
if x < int(1e5):
ls[x] = sum
return sum
n = int(input())
print(slv(n))
3.最大子段和之分治递归法
题目描述:
给定n(1<=n<=50000)个整数(可能为负数)组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的子段和的最大值。当所给的整数均为负数时定义子段和为0,依此定义,所求的最优值为: Max{0,a[i]+a[i+1]+…+a[j]},1<=i<=j<=n。 例如,当(a[1],a[2],a[3],a[4],a[5],a[6])=(-2,11,-4,13,-5,-2)时,最大子段和为20。
注意:本题目要求用分治递归法求解,除了需要输出最大子段和的值之外,还需要输出求得该结果所需的递归调用总次数。
输入格式:
第一行输入整数n(1<=n<=50000),表示整数序列中的数据元素个数;
第二行依次输入n个整数,对应顺序表中存放的每个数据元素值。
输出格式:
一行输出两个整数,之间以空格间隔输出:
第一个整数为所求的最大子段和;
第二个整数为用分治递归法求解最大子段和时,递归函数被调用的总次数。
样例
输入:
6
-2 11 -4 13 -5 -2
输出:
20 11
代码一(C++):
#include <bits/stdtr1c++.h>
using namespace std;
int cnt = 0;
vector<int> nums;
int maxSum(int l, int r) {
cnt++;
if (l == r)
return nums[l];
int mid = l + ((r - l) / 2); //这样写可以防止越界,比(l+r)/2更加安全
int lsum = maxSum(l, mid); // 左边最大子段
int rsum = maxSum(mid + 1, r); // 右边最大子段
//下面求中间最大子段
int s1 = 0, t1 = 0, s2 = 0, t2 = 0;
for (int i = mid; i >= l; i--) { // 注意:这里是从中间向左遍历,目的是为了让划分的左右两边序列能连接起来
t1 += nums[i];
s1 = max(s1, t1);
}
for (int i = mid + 1; i <= r; i++) {
t2 += nums[i];
s2 = max(s2, t2);
}
int sum = s1 + s2;
return max(sum, max(lsum, rsum));
}
int main() {
int n, t;
scanf("%d", &n);
for (int i = 0; i < n; i++) {
scanf("%d", &t);
nums.emplace_back(t);
}
cout << maxSum(1, n) << " " << cnt;
return 0;
}
代码二(Python)
cnt = 0
def maxSum(ls):
global cnt
cnt += 1
n = len(ls)
if n == 1:
return ls[0]
else:
suml = maxSum(ls[0:n // 2])
sumr = maxSum(ls[n // 2:n])
t1, s1, t2, s2 = 0, 0, 0, 0
for i in range(n // 2 - 1, -1, -1):
t1 += ls[i]
s1 = max(t1, s1)
for i in range(n // 2, n):
t2 += ls[i]
s2 = max(t2, s2)
return max(sumr, suml, s1 + s2)
n = int(input())
ls = list(map(int, input().split()))
print(maxSum(ls), cnt)
4.骨牌铺方格
题目描述:
在2×n的一个长方形方格中,用一个1× 2的骨牌铺满方格,输入n ,输出铺放方案的总数. 例如n=3时,为2× 3方格,骨牌的铺放方案有三种,如下图:
输入格式:
输入包含一个整数n,表示该测试实例的长方形方格的规格是2×n (0< n<=50)。
输出格式:
输出铺放方案的总数。
样例
输入:
3
输出:
3
代码一(C++):
#include<bits/stdtr1c++.h>
using namespace std;
int main() {
vector<long long int> v(55);
v[1] = 1, v[2] = 2;
for (int i = 3; i <= 50; i++)
v[i] = v[i - 1] + v[i - 2];
int n;
cin >> n;
cout << v[n];
return 0;
}
代码二(Python)
ls = [0, 1, 2]
for i in range(50):
ls.append(ls[-1] + ls[-2])
n = int(input())
print(ls[n])