分治算法(众数问题、整数因子分解问题、最大子段和问题、骨牌铺方格)

1.众数问题

题目描述:
给定含有n个元素的多重集合S,每个元素在S中出现的次数称为该元素的重数。多重集S中重数最大的元素称为众数。例如,S={1,2,2,2,3,5}。多重集S的众数是2,其重数为3。对于给定的由n 个自然数组成的多重集S,计算S的众数及其重数。如果出现多个众数,请输出最小的那个。

输入格式:
输入数据的第1行是多重集S中元素个数n(n<1300000);接下来的n行中,每行有一个最多含有5位数字的自然数。

输出格式:
输出数据的第1行给出众数,第2行是重数。

样例
输入:

6
1
2
2
2
3
5

输出:

2
3

代码:

#include<bits/stdtr1c++.h>
using namespace std;
map<int, int> mp;
int main() {
    int n;
    scanf("%d", &n);
    for (int i = 0, t; i < n; i++) {
        scanf("%d", &t);
        mp[t]++;
    }
    int max_num, max_sum = -1;
    for (auto x : mp) {
        if (x.second > max_sum) {
            max_num = x.first;
            max_sum = x.second;
        }
    }
    printf("%d\n%d", max_num, max_sum);
    return 0;
}

2.整数因子分解问题

题目描述:
大于1的正整数n可以分解为:n=x1x2…*xm。例如,当n=12 时,共有8 种不同的分解式:
12=12;
12=6 * 2;
12=4 * 3;
12=3 * 4;
12=3 * 2 * 2;
12=2 * 6;
12=2 * 3 * 2;
12=2 * 2 * 3。
对于给定的正整数n,计算n共有多少种不同的分解式。

输入格式:
输入数据只有一行,有1个正整数n (1≤n≤2000000000)。

输出格式:
将计算出的不同的分解式数输出。

样例
输入:

12

输出:

3

代码一(C++):

#include<bits/stdtr1c++.h>
using namespace std;
int a[10000000];
long long slv(int x) {
	long long sum = 1; //最少为1,即数自身
	if (x < 10000000 && a[x]) return a[x];
	for (int i = 2; i * i <= x; i++) {
		if (x % i == 0) {  //i是n的因子
			sum += slv(i);  //递归
			if (i * i != x) { //如果i不等于n开平方,则寻找另一个数
				sum += slv(x / i); //递归
			}
		}
	}
	if (x < 10000000) a[x] = sum;
	return sum;
}
int main() {
	int n;
	scanf("%d", &n);
	printf("%lld", slv(n));
	return 0;
}

代码二(Python):

ls = [0] * (int(1e5))

def slv(x):
    sum = 1
    if x < int(1e5) and ls[x]:
        return ls[x]
    for i in range(2, int(x ** 0.5 + 1)):
        if x % i == 0:
            sum += slv(i)
            if i ** 2 != x:
                sum += slv(x // i)
    if x < int(1e5):
        ls[x] = sum
    return sum

n = int(input())
print(slv(n))

3.最大子段和之分治递归法

题目描述:
给定n(1<=n<=50000)个整数(可能为负数)组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的子段和的最大值。当所给的整数均为负数时定义子段和为0,依此定义,所求的最优值为: Max{0,a[i]+a[i+1]+…+a[j]},1<=i<=j<=n。 例如,当(a[1],a[2],a[3],a[4],a[5],a[6])=(-2,11,-4,13,-5,-2)时,最大子段和为20。

注意:本题目要求用分治递归法求解,除了需要输出最大子段和的值之外,还需要输出求得该结果所需的递归调用总次数。

输入格式:
第一行输入整数n(1<=n<=50000),表示整数序列中的数据元素个数;
第二行依次输入n个整数,对应顺序表中存放的每个数据元素值。

输出格式:
一行输出两个整数,之间以空格间隔输出:
第一个整数为所求的最大子段和;
第二个整数为用分治递归法求解最大子段和时,递归函数被调用的总次数。

样例
输入:

6
-2 11 -4 13 -5 -2

输出:

20 11

代码一(C++):

#include <bits/stdtr1c++.h>
using namespace std;
int cnt = 0;
vector<int> nums;
int maxSum(int l, int r) {
    cnt++;
    if (l == r)
        return nums[l];
    int mid = l + ((r - l) / 2); //这样写可以防止越界,比(l+r)/2更加安全
    int lsum = maxSum(l, mid);   // 左边最大子段
    int rsum = maxSum(mid + 1, r); // 右边最大子段
    //下面求中间最大子段
    int s1 = 0, t1 = 0, s2 = 0, t2 = 0;
    for (int i = mid; i >= l; i--) { // 注意:这里是从中间向左遍历,目的是为了让划分的左右两边序列能连接起来
        t1 += nums[i];
        s1 = max(s1, t1);
    }
    for (int i = mid + 1; i <= r; i++) {
        t2 += nums[i];
        s2 = max(s2, t2);
    }
    int sum = s1 + s2;
    return max(sum, max(lsum, rsum));
}
int main() {
    int n, t;
    scanf("%d", &n);
    for (int i = 0; i < n; i++) {
        scanf("%d", &t);
        nums.emplace_back(t);
    }
    cout << maxSum(1, n) << " " << cnt;
    return 0;
}

代码二(Python)

cnt = 0

def maxSum(ls):
    global cnt
    cnt += 1
    n = len(ls)
    if n == 1:
        return ls[0]
    else:
        suml = maxSum(ls[0:n // 2])
        sumr = maxSum(ls[n // 2:n])
    t1, s1, t2, s2 = 0, 0, 0, 0
    for i in range(n // 2 - 1, -1, -1):
        t1 += ls[i]
        s1 = max(t1, s1)
    for i in range(n // 2, n):
        t2 += ls[i]
        s2 = max(t2, s2)
    return max(sumr, suml, s1 + s2)

n = int(input())
ls = list(map(int, input().split()))
print(maxSum(ls), cnt)

4.骨牌铺方格

题目描述:
在2×n的一个长方形方格中,用一个1× 2的骨牌铺满方格,输入n ,输出铺放方案的总数. 例如n=3时,为2× 3方格,骨牌的铺放方案有三种,如下图:

输入格式:
输入包含一个整数n,表示该测试实例的长方形方格的规格是2×n (0< n<=50)。

输出格式:
输出铺放方案的总数。

样例
输入:

3

输出:

3

代码一(C++):

#include<bits/stdtr1c++.h>
using namespace std;
int main() {
	vector<long long int> v(55);
	v[1] = 1, v[2] = 2;
	for (int i = 3; i <= 50; i++)
		v[i] = v[i - 1] + v[i - 2];
	int n;
	cin >> n;
	cout << v[n];
	return 0;
}

代码二(Python)

ls = [0, 1, 2]
for i in range(50):
    ls.append(ls[-1] + ls[-2])
n = int(input())
print(ls[n])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值