- 博客(2)
- 收藏
- 关注
原创 关于YOLOV5改进
由于第一次训练的数据大部分由电脑虚拟SD生成,如下图所示: 现在多往训练数据中添加一些马路上落石的真实数据。 修改后训练的效果如下图: 灰色是训练前。 蓝色是训练后。 发现二者精确率,召回率,map的值不相上下,但我们放在实际真实场景去推理的时候发现,有些石头无法被检测出来,或置信度非常低。 yolov5的网络架构图解打开model文件夹下的common.py 在yolo.py文件中添加CBAMC3模块 在yaml文件中增加CBAM 以上文件修改以后都别忘记保存,接下来直接运行。同理先修改common
2025-03-25 13:58:49
456
原创 基于嵌入式开发的落石检测系统(毕业设计前期学习记录 )
oencv文档毕设学习记录,本次毕设主要是做一个基于嵌入式开发的落石检测系统,我主要负责的是AI模型的选取和训练。这里主要涉及到目标检测和石头的识别。即是Localization+Classification定位:找到检测图像中带有一个给定标签的单个目标。检测:找到图像中带有给定标签的所有目标。
2025-03-25 13:55:22
790
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人