DFS,BFS以及图的遍历搜索

25 篇文章 1 订阅
11 篇文章 0 订阅
本文详细介绍了图的深度优先搜索(DFS)与广度优先搜索(BFS)两种基本算法,包括它们的基本写法及应用实例。对于DFS,分别从递归实现方式和基于邻接矩阵、邻接表的实现进行了说明;对于BFS,则同样提供了基于邻接矩阵和邻接表的具体实现方法。通过本文的学习,读者可以掌握这两种常用图遍历算法的核心思想及其在实际问题中的运用。
摘要由CSDN通过智能技术生成

 1)DFS的基本写法:

/**
 * \1) DFS的基本写法,可做模板使用
 */

/**
DFS(int index,int nowK,int sum)
{
    if(满足条件)
        return;
    if(nowK,sum的取值是满足条件的情况下不可能的值)
        return;
    if(judge(index))
    {
        这里可以加一些约束条件,已经访问了这个节点,就将这个节点设置为已访问;
        DFS(index+1);
        在这儿可以进行回溯;
    }
}
*/

2) BFS的基本写法

/**
   2) BFS的基本写法
*/

/**
BFS(int index)
{
    queue<int> q;
    q.push(index);
    inq[index]=true;  //这儿需要注意,inq是结点是否入队,而不是是是否访问,否则会造成
    while(!q.empty())   //多个相同的结点入队,这与DFS的vis函数是有区别的;
    {
        int top=q.front();
        q.pop();
        for(...)
        {
            将top的下一层结点的元素入队;
            将入队的元素设置为已入队;
        }
    }
}
*/

3)图的深度优先遍历搜索(DFS)

/**
    3)图的深度优先遍历搜索(DFS)
*/

/**
邻接矩阵版:
int G[maxv][maxv],maxn;
bool vis[maxv];

void DFS(index) //index为当前访问的顶点标号
{
    vis[index]=true;    //将index设置为已访问
    for(int i=0;i<maxn;++i) //访问与index联通的点
    {
        if(G[index][i]!=INF&&vis[i]!=true)
            DFS(i);
    }
}

void DFSTrave()
{
    for(int i=0;i<maxn;++i)
        if(vis[i]==false)
            DFS(i);
}
*/

/**
邻接表版:
int maxn,maxv;
vector<int> adj[maxv];
bool vis[maxv];

void DFS(index) //index为当前访问的顶点标号
{
    vis[index]=true;    //将index设置为已访问
    for(int i=0;i<adj[index].size();++i)
    {
        int v=adj[index][i];    //注意这里是取得是adj[index]里的值
        if(vis[v]==false)
            DFS(v);
    }
}

void DFSTrave()
{
    for(int i=0;i<maxn;++i)
        if(vis[i]==false)
            DFS(i);
}
*/

4) 图的广度优先搜索算法

/**
   4) 图的广度优先搜索算法
*/

/**
邻接矩阵版:
int G[maxv][maxv],maxn;
bool inq[maxv];

void BFS(index) //遍历index所在的连通块
{
    queue<int> q;
    q.push(index);
    inq[index]=true;
    while(!q.empty())
    {
        int top=q.front();
        q.pop();
        for(int i=0;i<maxn;++i)
        {
            if(G[index][i]!=INF&&inq[i]==false)
            {
                q.push(i);
                inq[i]=true;
            }
        }
    }
}

void BFSTrave() //遍历图G
{
    for(int i=0;i<maxn;++i)
        if(inq[i]==false)
            BFS(i);
}
*/


/**
邻接表版:
int maxn,maxv;
vector<int> adj[maxv];
bool inq[maxv];

void BFS(index) //遍历index所在的连通块
{
    queue<int> q;
    q.push(index);
    inq[index]=true;
    while(!q.empty())
    {
        int top=q.front();
        q.pop();
        for(int i=0;i<adj[index].size();++i)
        {
            int v=adj[index][i];        //注意这里是取得是adj[index]里的值
            if(inq[v]==false)
            {
                q.push(v);
                inq[v]=true;
            }
        }
    }
}

void BFSTrave() //遍历图G
{
    for(int i=0;i<maxn;++i)
        if(vis[i]==false)
            BFS(i);
}
*/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值