卡特兰数(高精度乘法压位)

该博客探讨了卡特兰数在解决排列问题中的应用,例如满足特定条件的01序列和火车车厢出栈顺序。通过解释这些问题与二维矩阵路径的关系,博主展示了如何利用卡特兰数公式计算合法序列的数量,并提供了高效的算法实现,包括高精度计算和质因数分解。
摘要由CSDN通过智能技术生成

889. 满足条件的01序列

给定 n

个 0 和 n 个 1,它们将按照某种顺序排成长度为 2n 的序列,求它们能排列成的所有序列中,能够满足任意前缀序列中 0 的个数都不少于 1

的个数的序列有多少个。

输出的答案对 109+7

取模。

输入格式

共一行,包含整数 n

输出格式

共一行,包含一个整数,表示答案。

数据范围

1≤n≤105

输入样例:

3

输出样例:

5

* 假定在一个二维矩阵的地图里,向右走为0,向上走为1,则要求能排列成的所有序列中,
 * 能够满足任意前缀序列中 0 的个数都不少于 1 的个数的序列,所有点都满足为或者在
 * (0,0) 到 (n,n) 的直线上或者在下方。只要有点越过直线 y=x+1 ,再到达点(n,n),
 * 则这种排列就是不符合要求的。所以不符合要求的走法一定满足从(0,0) 到 (n-1,n+1) 的
 * 路线关于 y=x+1 对称 (因为(0,0) 到 (n,n+1) 的路线一定是不合法的,并且(n,n)与
 * (n-1,n+1) 关于 y=x+1 对称。)。那么我们只要 C(2*n,n) - C(2*n,n-1) 就是答案。
 *
 * C(2*n,n) - C(2*n,n-1) =C(2*n,n)/(n+1);()
 *
 * 卡特兰数:
 * C(2*n,n) - C(2*n,n-1) =(2*n)! / (n! * n! * (n+1))

/**
 * 假定在一个二维矩阵的地图里,向右走为0,向上走为1,则要求能排列成的所有序列中,
 * 能够满足任意前缀序列中 0 的个数都不少于 1 的个数的序列,所有点都满足为或者在
 * (0,0) 到 (n,n) 的直线上或者在下方。只要有点越过直线 y=x+1 ,再到达点(n,n),
 * 则这种排列就是不符合要求的。所以不符合要求的走法一定满足从(0,0) 到 (n-1,n+1) 的
 * 路线关于 y=x+1 对称 (因为(0,0) 到 (n,n+1) 的路线一定是不合法的,并且(n,n)与
 * (n-1,n+1) 关于 y=x+1 对称。)。那么我们只要 C(2*n,n) - C(2*n,n-1) 就是答案。
 * 
 * C(2*n,n) - C(2*n,n-1) =C(2*n,n)/(n+1);()
 * 
 * 卡特兰数:
 * C(2*n,n) - C(2*n,n-1) =(2*n)! / (n! * n! * (n+1))
*/

#include <iostream>

using namespace std;

typedef long long LL;

const int mod=1e9+7,maxn=1e5+10;
int fac[2*maxn],infac[maxn];

int qmi(int a,int b,int p)
{
    int res=1;
    while(b)
    {
        if(b&1)
            res=(LL)res*a%mod;
        a=(LL)a*a%mod;
        b>>=1;
    }
    
    return res;
}

void init(int n)
{
    fac[0] = infac[0] = 1; //初始化
    for(int i=1;i<=2*n;++i)
        fac[i]=(LL)fac[i-1]*i%mod;
        
    for(int i=1;i<=n;++i)
        infac[i]=(LL)infac[i-1]*qmi(i,mod-2,mod)%mod; //必须要用qmi求逆元
}


int main()
{
    int n;
    cin >> n;
    init(n);
    cout << (LL)fac[2*n]*infac[n]%mod*infac[n]%mod *qmi(n+1,mod-2,mod)%mod  << endl;
    return 0;
}

130. 火车进出栈问题

一列火车 n

节车厢,依次编号为 1,2,3,…,n

每节车厢有两种运动方式,进栈与出栈,问 n

节车厢出栈的可能排列方式有多少种。

输入格式

输入一个整数 n

,代表火车的车厢数。

输出格式

输出一个整数 s

表示 n

节车厢出栈的可能排列方式数量。

数据范围

1≤n≤60000

输入样例:

3

输出样例:

5

* 卡特兰数:
 * C(2*n,n) - C(2*n,n-1) =(2*n)! / (n! * n! * (n+1));
 *
 * 这个题与满足条件的01序列解法一样,只不过这个题是输出全部方案数,不取模,
 * 输出高精度数据;由于数据较大,所以我们用质因数分解的方法来求解。
 * 最后由于高精度数据相乘是主要的算法时间消耗,因此我们优化高精度数据相乘,
 * 用LL来存储结果,每次相乘我们以 M=1e9 作为进制数,(这样两个M相乘也不会爆LL);
 * 这样能减少许多乘法步骤;这种方法称为高精度压位。

/**
 * 假定在一个二维矩阵的地图里,向右走为0,向上走为1,则要求能排列成的所有序列中,
 * 能够满足任意前缀序列中 0 的个数都不少于 1 的个数的序列,所有点都满足为或者在
 * (0,0) 到 (n,n) 的直线上或者在下方。只要有点越过直线 y=x+1 ,再到达点(n,n),
 * 则这种排列就是不符合要求的。所以不符合要求的走法一定满足从(0,0) 到 (n-1,n+1) 的
 * 路线关于 y=x+1 对称 (因为(0,0) 到 (n,n+1) 的路线一定是不合法的,并且(n,n)与
 * (n-1,n+1) 关于 y=x+1 对称。)。那么我们只要 C(2*n,n) - C(2*n,n-1) 就是答案。
 * 
 * C(2*n,n) - C(2*n,n-1) =C(2*n,n)/(n+1);()
 * 
 * 卡特兰数:
 * C(2*n,n) - C(2*n,n-1) =(2*n)! / (n! * n! * (n+1));
 * 
 * 这个题与满足条件的01序列解法一样,只不过这个题是输出全部方案数,不取模,
 * 输出高精度数据;由于数据较大,所以我们用质因数分解的方法来求解。
 * 最后由于高精度数据相乘是主要的算法时间消耗,因此我们优化高精度数据相乘,
 * 用LL来存储结果,每次相乘我们以 M=1e9 作为进制数,(这样两个M相乘也不会爆LL);
 * 这样能减少许多乘法步骤;这种方法称为高精度压位。
*/


#include <iostream>
#include <algorithm>

using namespace std;

typedef long long LL;

const LL M=1e9;
const int N = 12e4+10;
int p[N],sum[N],num=0;
bool hs[N];

void get_primer(int n) //获得n以内的素数
{
    for(int i=2;i<=n;++i)
    {
        if(hs[i]==0)
            p[num++]=i;
        for(int j=0;p[j]<=n/i;++j)
        {
            hs[p[j]*i]=1;
            if(i%p[j]==0)
                break;
        }
    }
}

int cal(int n,int p) //计算n! 内有多少个因子p
{
    int cnt=0;
    while (n)
    {
        cnt+=n/p;
        n/=p;
    }
    
    return cnt;
}

void get_pow(int a,int b) //将C(a,b) 进行质因子分解
{
    for(int i=0;i<num;++i)
    {
        int cnt=cal(a,p[i]) -cal(b,p[i])*2;
        sum[i]=cnt;
    }
}

void mul(vector<LL> &A,int b) //高精度与整数相乘
{
    LL d=0;
    for(int i=0;i<A.size();++i)
    {
        d+=A[i]*b;
        A[i]=d%M;
        d/=M;
    }
    
    while(d)
    {
        A.push_back(d%M);
        d/=M;
    }
}

void print(vector<LL> &res)  //输出高精度数据
{
    cout << res.back();  // 最后一位不需要输出九位
    for(int i=res.size()-2;i>=0;--i)
        printf("%09lld",res[i]);  //因为是按着1e9作为进制数,所以中间的位要输出九位,
    cout << endl;               //不足九位的补零
}

int main()
{
    int n;
    cin >> n;
    get_primer(2*n);
    get_pow(2*n,n);
    
    int r=n+1;
    for(int i=0;i<num && r>1;++i)
    {
        while(r%p[i]==0)
        {
            sum[i]-=1;
            r/=p[i];
        }
    }
    
    vector<LL> res;
    res.push_back(1);
    
    for(int i=0;i<num;++i)
        for(int j=0;j<sum[i];++j)
            mul(res,p[i]);
    
    print(res);
    return 0;
    
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值