827. 双链表
实现一个双链表,双链表初始为空,支持 5
种操作:
- 在最左侧插入一个数;
- 在最右侧插入一个数;
- 将第 k
- 个插入的数删除;
- 在第 k
- 个插入的数左侧插入一个数;
- 在第 k
- 个插入的数右侧插入一个数
现在要对该链表进行 M
次操作,进行完所有操作后,从左到右输出整个链表。
注意:题目中第 k
个插入的数并不是指当前链表的第 k 个数。例如操作过程中一共插入了 n 个数,则按照插入的时间顺序,这 n 个数依次为:第 1 个插入的数,第 2 个插入的数,…第 n
个插入的数。
输入格式
第一行包含整数 M
,表示操作次数。
接下来 M
行,每行包含一个操作命令,操作命令可能为以下几种:
L x
,表示在链表的最左端插入数 x
- 。
R x
,表示在链表的最右端插入数 x- 。
D k
,表示将第 k- 个插入的数删除。
IL k x
,表示在第 k- 个插入的数左侧插入一个数。
IR k x
,表示在第 k
- 个插入的数右侧插入一个数。
输出格式
共一行,将整个链表从左到右输出。
数据范围
1≤M≤100000
所有操作保证合法。
输入样例:
10
R 7
D 1
L 3
IL 2 10
D 3
IL 2 7
L 8
R 9
IL 4 7
IR 2 2
输出样例:
8 7 7 3 2 9
* head (0号点) 表示头节点,其不存储数据,tail(1号点)表示尾结点,也不存储数据;
* idx表示最后一个插入元素的下一个位置;
*
* 四个插入数据的位置可以写成一个函数,调用此函数的时候,根据每种插入元素的类型
* 传递不同的参数;
*
* add(int k,int x); //在第k号位的右边插入一个元素;
* L x,表示在链表的最左端插入数 x,此种类型的函数调用为: add(head,x);
* R x,表示在链表的最右端插入数 x,此种类型的函数调用为: add(l[tail],x);
* IL k x,表示在第 k个插入的数左侧插入一个数。add(l[k],x);
* IR k x,表示在第 k个插入的数右侧插入一个数。add(k,x);
/**
* head (0号点) 表示头节点,其不存储数据,tail(1号点)表示尾结点,也不存储数据;
* idx表示最后一个插入元素的下一个位置;
*
* 四个插入数据的位置可以写成一个函数,调用此函数的时候,根据每种插入元素的类型
* 传递不同的参数;
*
* add(int k,int x); //在第k号位的右边插入一个元素;
* L x,表示在链表的最左端插入数 x,此种类型的函数调用为: add(head,x);
* R x,表示在链表的最右端插入数 x,此种类型的函数调用为: add(l[tail],x);
* IL k x,表示在第 k个插入的数左侧插入一个数。add(l[k],x);
* IR k x,表示在第 k个插入的数右侧插入一个数。add(k,x);
*/
#include <iostream>
using namespace std;
const int maxn = 1e5+10;
int e[maxn],l[maxn],r[maxn],head,tail,idx;
//初始时,0号点的右边是1号点,1号点的左边是0号点,因为初始链表中没有数据;
void init()
{
head=0,tail=1;
r[head]=tail;
l[tail]=head;
idx=2;
}
void add(int k,int x)
{
e[idx]=x;
l[idx]=k;
r[idx]=r[k];
l[r[k]]=idx;
r[k]=idx;
++idx;
}
void Delete(int k)
{
r[l[k]]=r[k];
l[r[k]]=l[k];
}
void Print()
{
for(int i=r[head];i!=tail;i=r[i])
cout << e[i] << ' ';
cout << endl;
}
int main()
{
init();
int n;
cin >> n;
for(int i=0;i<n;++i)
{
string op;
int k,x;
cin >> op;
if(op == "L")
{
cin >> x;
add(0,x);
}
else if(op == "R")
{
cin >> x;
add(l[tail],x);
}
else if(op == "IL")
{
cin >> k >> x; // 注意e数组是从下标为2 的位置开始存储的,那么就应该
add(l[k+1],x); // 在k+1 的位置进行处理,下面的k同理;
}
else if(op == "IR")
{
cin >> k >> x;
add(k+1,x);
}
else
{
cin >> k;
Delete(k+1);
}
}
Print();
return 0;
}